Traffic Accident Severity Prediction Based on Decision Level Fusion of Machine and Deep Learning
Abstract
Traffic accidents on highways are a leading cause of death despite the development of traffic safety measures. The burden of casualties and damage caused by road accidents is very high for developing countries. Many factors are associated with traffic accidents, some of which are more significant than others in determining the severity of accidents. Data mining techniques can help in predicting influential factors related to crash severity. In this study, significant factors that are strongly correlated with the accident severity on highways are identified by Random Forest. Top features affecting accidental severity include distance, temperature, wind_Chill, humidity, visibility, and wind direction. This study presents an ensemble of machine learning and deep learning models by combining Random Forest and Convolutional Neural Network called RFCNN for the prediction of road accident severity.