DFR TSD A DEEP LEARNING BASED FRAMEWORK FOR ROBUST TRAFFIC SIGN DETECTION UNDER CHALLENGING WEATHER CONDITIONS
Keywords:
CNN, TSD, TSDR, CC, traffic video.Abstract
Robust traffic sign detection and recognition (TSDR) is of paramount importance for the successful realization of autonomous vehicle technology. The importance of this task has led to vast amount of research efforts and many promising methods have been proposed in the existing literature. However, most of these methods have been evaluated on clean and challenge-free datasets and overlooked the performance deterioration associated with different challenging conditions (CCs) that obscure the traffic-sign images captured in the wild. In this paper, we look at the TSDR problem under CCs and focus on the performance degradation associated with them. To this end, we propose a Convolutional Neural Network (CNN) based prior enhancement focused TSDR framework. Our modular approach consists of a CNN-based challenge classifier, Enhance-Net–an encoder-decoder CNN architecture for image enhancement, and two separate CNN architectures for sign- detection and classification. We propose a novel training pipeline for Enhance-Net that focuses on the enhancement of the traffic sign regions (instead of the whole image) in the challenging images subject to their accurate detection. We used CURE-TSD dataset consisting of traffic videos captured under different CCs to evaluate the efficacy of our approach.