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Abstract: Seismological data is crucial for assessing slope failure hazards promptly. However, identifying rockfall 

waveforms from seismic data is challenging due to their variability across events and stations. To tackle this, we 

introduce RockNet, a multitask deep learning model designed to detect rockfall and earthquake events at single-

station and local seismic network levels. RockNet comprises two submodels: a single-station model that computes 

waveform masks for earthquake and rockfall signals, simultaneously picking P and S phases from single-station 

seismograms, and an association model that aggregates hidden feature maps from trained single-station models 

across all stations to determine local seismic event occurrences. In our study, we compared RockNet with traditional 

machine learning algorithms such as SVM, KNN, Random Forest, and a Voting Classifier combining KNN and 

Random Forest. Our findings indicate that the Voting Classifier achieved higher accuracy compared to other 

algorithms. This suggests that ensemble techniques combining strengths from different models can effectively 

enhance the detection capabilities of seismic event identification systems, showing promise for robust hazard 

assessment in geophysical monitoring applications. 

Index Terms: Multitask learning, rockfall seismic monitoring, transfer learning. 

 

1. INTRODUCTION 

Rockfalls represent a significant geological hazard in mountainous regions worldwide, posing risks to infrastructure, 

communities, and natural ecosystems. These events, often intertwined with other slope failures such as landslides 

and debris flows, can have profound socioeconomic impacts by disrupting transportation routes, damaging property, 

and endangering lives [1]. Traditionally, the study of rockfalls has relied on a combination of meteorological data 

and advanced topographic measurements obtained through technologies like airborne LiDAR and terrestrial laser 

scanning (TLS) [2]. While effective in providing detailed topographic information, these methods are constrained by 

their high costs and susceptibility to adverse weather conditions, which can limit data collection and analysis [3]. 

Alternative approaches to studying rockfalls include time-lapse imaging and stereographic photography, which offer 

intuitive insights into the dynamics of rockfall events. However, these methods are hindered by limitations in 

environmental visibility and performance during nighttime conditions [4]. In recent years, seismic monitoring has 

emerged as a promising alternative due to its cost-effectiveness and independence from weather conditions [5]. By 

recording ground movements using seismometers, seismic monitoring provides dynamic data crucial for 
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understanding the temporal and spatial aspects of rockfall events, including estimation of magnitude and location 

[6]. 

Despite its advantages, automatic detection of rockfall events within continuous seismic recordings remains a 

challenging task. Existing methods typically employ amplitude-sensitive algorithms operating in either the time or 

frequency domains, often supplemented by machine learning techniques [7]. Classical machine learning approaches 

such as hidden Markov models and random forests have been applied, relying on carefully selected features to 

distinguish rockfall signals from background noise. However, these methods struggle with generalization across 

diverse rockfall characteristics such as varying volumes, movement patterns, and propagation mechanisms [8]. 

This research aims to explore advanced machine learning techniques to enhance the accuracy and robustness of 

rockfall detection from seismic data. Specifically, multitask learning and transfer learning methodologies will be 

investigated to leverage shared information across multiple tasks and adapt knowledge from related domains to 

improve detection capabilities [9]. By integrating these innovative approaches, the study seeks to overcome the 

limitations of traditional methods and contribute to the development of more reliable early warning systems for 

mitigating rockfall hazards in mountainous environments. 

In summary, while traditional methods for studying rockfalls have provided valuable insights, they are often 

constrained by high costs and environmental factors. Seismic monitoring offers a promising alternative, providing 

continuous and weather-independent data that can be leveraged for real-time detection and characterization of 

rockfall events. By applying advanced machine learning techniques, this research aims to advance the field by 

improving the accuracy and reliability of automated rockfall detection systems, ultimately enhancing our ability to 

mitigate the risks associated with these hazardous geological phenomena. 

 

2. LITERATURE SURVEY 

Rockfalls are a significant hazard in mountainous regions, often interlinked with other slope failures such as 

landslides and debris flows, and can have severe impacts on socioeconomic stability by damaging infrastructure and 

threatening human lives. Understanding the mechanisms and triggers of rockfalls is essential for developing 

effective mitigation strategies. Traditional approaches to studying rockfalls have primarily relied on meteorological 

data and advanced topographic measurements, utilizing technologies like airborne LiDAR and terrestrial laser 

scanning (TLS). These methods provide detailed topographic information crucial for hazard assessment and risk 

management. 

For instance, M. Krautblatter and M. Moser [1] developed a nonlinear model coupling rockfall and rainfall intensity 

based on a four-year measurement in the German Alps. Their study demonstrated a significant correlation between 

rainfall intensity and rockfall events, highlighting the importance of meteorological factors in triggering rockfalls. 

Similarly, A. Delonca et al. [3] conducted a statistical analysis to correlate meteorological data with rockfall 

occurrences. They found that certain weather conditions, particularly intense and prolonged rainfall, significantly 

increase the likelihood of rockfalls, providing valuable insights into the temporal patterns of these hazardous events. 
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J. D’Amato et al. [4] further explored the influence of meteorological factors on rockfall occurrence in a middle 

mountain limestone cliff, finding that temperature variations, freeze-thaw cycles, and precipitation are critical 

triggers. Their study emphasized the complex interplay of different meteorological factors in influencing rockfall 

dynamics and underscored the necessity of integrating weather data in hazard assessment models. 

While these studies have significantly advanced our understanding of rockfall mechanisms, the traditional methods 

employed are often constrained by high costs and environmental limitations. Technologies like airborne LiDAR and 

TLS, although providing high-resolution topographic data, are expensive and can be hampered by adverse weather 

conditions, limiting their applicability in continuous monitoring scenarios [5][6][7]. For instance, M. Lato et al. [5] 

utilized mobile terrestrial LiDAR for monitoring rockfall hazards along transportation corridors, demonstrating the 

potential of this technology in providing detailed and accurate topographic data. However, the study also noted the 

high operational costs and the challenges posed by unfavorable weather conditions. 

Seismic monitoring has emerged as a promising alternative, offering a cost-effective and weather-independent 

method for rockfall detection. By recording ground movements using seismometers, seismic monitoring provides 

dynamic data essential for understanding the temporal and spatial aspects of rockfall events. H. Lan et al. [6] 

employed LiDAR and spatial modeling to analyze rockfall hazards, demonstrating the effectiveness of integrating 

seismic data with topographic information for comprehensive hazard assessment. 

Despite its advantages, automatic detection of rockfall events within continuous seismic recordings remains 

challenging. Existing methods typically employ amplitude-sensitive algorithms operating in either the time or 

frequency domains, often supplemented by machine learning techniques. Classical machine learning approaches, 

such as hidden Markov models and random forests, have been applied to detect rockfall signals from seismic data. 

These methods rely on carefully selected features to distinguish rockfall signals from background noise but struggle 

with generalization across diverse rockfall characteristics, such as varying volumes, movement patterns, and 

propagation mechanisms [8]. 

To address these limitations, recent research has focused on exploring advanced machine learning techniques to 

enhance the accuracy and robustness of rockfall detection from seismic data. Multitask learning and transfer 

learning methodologies, in particular, have shown promise in leveraging shared information across multiple tasks 

and adapting knowledge from related domains to improve detection capabilities. A. M. Fanos et al. [9] developed a 

hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne 

laser scanning data. Their study demonstrated the potential of integrating advanced machine learning techniques 

with traditional data sources to enhance rockfall detection and hazard assessment. 

Moreover, the integration of seismic monitoring with advanced machine learning techniques offers a promising 

avenue for developing more reliable early warning systems for mitigating rockfall hazards. By leveraging the 

strengths of both methodologies, it is possible to overcome the limitations of traditional approaches and provide 

real-time, accurate detection of rockfall events. This integrated approach not only enhances our understanding of 

rockfall mechanisms but also contributes to the development of effective mitigation strategies, ultimately reducing 

the risks associated with these hazardous geological phenomena. 
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In summary, while traditional methods for studying rockfalls have provided valuable insights, they are often 

constrained by high costs and environmental limitations. Seismic monitoring, coupled with advanced machine 

learning techniques, offers a promising alternative, providing continuous and weather-independent data that can be 

leveraged for real-time detection and characterization of rockfall events. By integrating these innovative approaches, 

researchers can develop more reliable early warning systems and improve our ability to mitigate the risks associated 

with rockfalls in mountainous environments. The ongoing advancements in this field hold significant potential for 

enhancing hazard assessment and risk management, ultimately contributing to the safety and resilience of 

communities in mountainous regions. 

 

3. METHODOLOGY 

a) Proposed Work: 

The proposed system, RockNet, integrates advanced deep learning techniques tailored for seismic event detection. It 

features a dual-component architecture: a single-station model for precise waveform analysis and phase picking, and 

an association model for consolidating information across multiple stations to identify local seismic events. By 

leveraging these models, RockNet aims to overcome the challenges of variable rockfall waveform identification 

across diverse seismic conditions. In comparative evaluations against traditional SVM, KNN, Random Forest, and a 

Voting Classifier ensemble, voting classifier demonstrates superior accuracy, highlighting the efficacy of ensemble 

methods in enhancing seismic event detection capabilities. This system holds promise for robust hazard assessment 

in geophysical monitoring, offering a reliable tool for timely slope failure hazard evaluations based on 

comprehensive seismological data analysis. 

b) System Architecture: 

 

Fig 1 proposed Architecture 

The proposed system architecture for rockfall and earthquake prediction begins with the collection of a 

comprehensive dataset, incorporating seismic data relevant to rockfall and earthquake events. This dataset undergoes 

preprocessing to ensure data quality, normalization, and the extraction of relevant features. The processed data is 

then split into training and testing sets to facilitate model evaluation. The training set is used to build multiple 

predictive models, including RockNet, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Random 

Forest, and a Voting Classifier that combines KNN and Random Forest. These models are trained on the training 
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data to learn the patterns associated with rockfall and earthquake events. The trained models are subsequently tested 

using the testing set to assess their performance. Performance evaluation metrics such as accuracy, precision, recall, 

and F1 score are computed to determine the effectiveness of each model in predicting rockfalls and earthquakes. 

c) Dataset Collection: 

The dataset collection for rockfall and earthquake prediction involves two primary datasets: the Super-Sauze and 

Luhu datasets. The Super-Sauze dataset, derived from the Super-Sauze landslide site in the French Alps, includes 

extensive seismic and meteorological data recorded over several years. This dataset encompasses rockfall 

occurrences, rainfall intensity, temperature variations, and other relevant environmental parameters. The Luhu 

dataset, collected from the Luhu landslide site in China, comprises similar data, including seismic recordings, 

weather conditions, and geological observations. Both datasets are meticulously curated to ensure high-quality and 

comprehensive data, capturing various rockfall and earthquake events under diverse conditions. These datasets are 

then merged and standardized, forming a robust foundation for developing and testing predictive models. The 

integration of these datasets allows for a diverse range of rockfall and earthquake scenarios, enhancing the model's 

ability to generalize and perform accurately in different geological and environmental contexts. 

d) Data Processing:  

Data processing for rockfall and earthquake prediction begins with cleaning and normalizing the combined Super-

Sauze and Luhu datasets to handle missing values, remove noise, and ensure consistency. Relevant features, such as 

seismic signal characteristics, meteorological parameters, and geological indicators, are extracted to form a 

comprehensive feature set. The data is then labeled, categorizing instances as rockfall, earthquake, or non-event 

based on event logs and annotations. Feature scaling is applied to standardize the range of values, improving the 

performance of machine learning algorithms. Additionally, data augmentation techniques may be employed to 

address class imbalances, ensuring a more balanced representation of different event types. Time-series data is 

segmented into appropriate windows to capture temporal dependencies. The processed data is then split into training 

and testing sets, preserving the temporal order to prevent data leakage. This structured and preprocessed data is 

ready for input into various predictive models for training and evaluation. 

e) Feature Selection: 

Feature selection for rockfall and earthquake prediction involves identifying the most relevant features from the 

combined Super-Sauze and Luhu datasets. Techniques such as correlation analysis, mutual information, and 

principal component analysis (PCA) are used to evaluate the importance of features like seismic signal attributes 

(e.g., amplitude, frequency), meteorological parameters (e.g., rainfall intensity, temperature), and geological factors 

(e.g., slope angle, soil composition). Redundant and irrelevant features are eliminated to enhance model 

performance and reduce computational complexity. The selected features provide a concise, informative 

representation of the data, facilitating accurate and efficient prediction of rockfall and earthquake events. 

f) Data Visualization: 

Data visualization for rockfall and earthquake prediction involves creating graphical representations of the processed 

features from the Super-Sauze and Luhu datasets. Key visualizations include time-series plots of seismic activity 
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and meteorological parameters to observe temporal patterns and correlations with rockfall and earthquake events. 

Scatter plots and correlation matrices are used to identify relationships between features, such as the impact of 

rainfall intensity and temperature variations on seismic signals. Heatmaps and geographical maps display the spatial 

distribution of events, highlighting high-risk areas. These visualizations aid in understanding the data, identifying 

trends, and communicating insights effectively, enhancing the overall predictive modeling process. 

g) Training & Testing: 

Data splitting for training and testing involves partitioning the processed Super-Sauze and Luhu datasets into two 

distinct subsets. Typically, 70-80% of the data is allocated for training, used to build and tune predictive models, 

while the remaining 20-30% is reserved for testing, used to evaluate the model's performance. This split ensures that 

the models are trained on a diverse set of examples while being tested on unseen data to assess their generalization 

capabilities. Temporal ordering is preserved during the split to prevent data leakage, ensuring that the models are 

evaluated in a realistic and unbiased manner. 

h) Algorithms: 

RockNet: RockNet is a deep learning-based model designed for rockfall and earthquake event detection from 

seismological data. It employs advanced waveform analysis and multi-station data aggregation to enhance accuracy 

and reliability in identifying seismic events, crucial for timely hazard assessment and risk mitigation in geophysical 

monitoring. 

Support Vector Machine (SVM): SVM is used for classification tasks in seismology, effectively separating seismic 

events based on defined features extracted from waveform data. It's valuable in identifying patterns in seismic 

signals and distinguishing between different types of earthquakes and rockfalls, aiding in geological hazard 

assessment. 

K-Nearest Neighbors (KNN): KNN is utilized to classify seismic events based on similarity measures between 

waveform features and neighboring data points. It's advantageous for its simplicity and ability to handle nonlinear 

relationships in data, making it suitable for localized detection and event clustering in seismological studies. 

Random Forest: Random Forest employs an ensemble of decision trees to classify seismic events based on feature 

vectors extracted from waveform data. It excels in handling large datasets and mitigating overfitting, offering robust 

classification performance for identifying complex patterns in seismic signals. 

Voting Classifier (KNN + Random Forest): The Voting Classifier combines predictions from KNN and Random 

Forest models to improve overall classification accuracy. By leveraging the strengths of both algorithms, it enhances 

the reliability of seismic event detection by aggregating diverse perspectives on waveform data, providing a more 

comprehensive approach to geophysical hazard assessment. 

4. EXPERIMENTAL RESULTS 

Accuracy: The accuracy of a test is its ability to differentiate the patient and healthy cases correctly. To estimate the 

accuracy of a test, we should calculate the proportion of true positive and true negative in all evaluated cases. 

Mathematically, this can be stated as: 

 Accuracy = TP + TN TP + TN + FP + FN. 
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Fig 2 Accuracy Comparison Graph 

Precision: Precision evaluates the fraction of correctly classified instances or samples among the ones classified as 

positives. Thus, the formula to calculate the precision is given by: 

Precision = True positives/ (True positives + False positives) = TP/(TP + FP) 

 

 

Fig 3 Precision Comparison Graph 

Recall: Recall is a metric in machine learning that measures the ability of a model to identify all relevant instances 

of a particular class. It is the ratio of correctly predicted positive observations to the total actual positives, providing 

insights into a model's completeness in capturing instances of a given class. 
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Fig 4 Recall Comparison Graph 

F1-Score: F1 score is a machine learning evaluation metric that measures a model's accuracy. It combines the 

precision and recall scores of a model. The accuracy metric computes how many times a model made a correct 

prediction across the entire dataset. 

 

 

Fig 5 F1 Score Comparison Graph 
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Fig 6 Performance Evaluation Table 

 

Fig 7 Performance Evaluation Comparison Graphs 

 

Fig 8 Home Page 

 

Fig 9 Registration Page 
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Fig 10 Login Page 

 

Fig 11 Upload Input Data 

 

Fig 12 Predicted Results 

 

Fig 13 Upload Input Data 
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Fig 14 Final Outcome 

 

 

 

5. CONCLUSION 

In conclusion, the development of RockNet represents a significant advancement in the field of rockfall detection 

from seismological data. By integrating deep learning techniques and leveraging waveform analysis across multiple 

stations, RockNet addresses the limitations of traditional methods. It improves accuracy in identifying rockfall and 

earthquake events, crucial for timely hazard assessment and risk mitigation in mountainous regions. The 

comparative evaluations against traditional models underscore voting classifier superiority in scalability, 

adaptability, and performance, highlighting its potential as a reliable tool for geophysical monitoring applications. 

 

6. FUTURE SCOPE 

Future research could focus on expanding RockNet's capabilities to integrate real-time data streams and enhance 

predictive modeling of rockfall events. Incorporating additional features such as environmental factors and historical 

data could further improve its accuracy and reliability. Moreover, extending its applicability to other natural hazard 

detection systems beyond rockfalls could broaden its impact in disaster prevention and emergency response efforts 

globally. 
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