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Abstract: This paper introduces an innovative approach for automated road damage detection using Unmanned 

Aerial Vehicle (UAV) images and advanced deep learning techniques. Road infrastructure maintenance is crucial for 

safe transportation, but manual data collection is often labor-intensive and risky. In response, we employ UAVs and 

Artificial Intelligence (AI) to significantly enhance the efficiency and accuracy of road damage detection. Our 

method leverages three state-of-the-art algorithms, YOLOv5, and YOLOv7, for object detection in UAV images. 

Extensive training and testing with datasets from China and Spain reveal that YOLOv7 yields the highest precision.  

Furthermore, we extend our research by introducing YOLOv8, which, when trained on road damage data, 

outperforms other algorithms, demonstrating even greater prediction accuracy. These findings underscore the 

potential of UAVs and deep learning in road damage detection, paving the way for future advancements in this field. 

Index terms - UAV, road damage detection, deep learning, object-detection, YOLOV5, YOLOV7, YOLOV8. 

 

1. INTRODUCION 

The maintenance of roads is crucial for economic development, necessitating periodic assessments to ensure 

longevity and safety. Traditionally, manual methods for road inspection have been employed, involving vehicles 

equipped with sensors. However, this approach is time-consuming, costly, and risky for operators [1]. To address 

these challenges, researchers have turned to Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence (AI) 

technologies. UAVs, equipped with high-resolution cameras and sensors, offer a comprehensive view of road 

conditions, covering large areas quickly and reducing the need for manual inspections [2]. 

UAVs have gained attention for road inspections due to their versatility and efficiency. Combining UAVs with AI 

techniques, particularly deep learning, has enabled the development of efficient and cost-effective approaches for 

road damage detection [3]. These techniques are also applied in various urban inspection tasks [4], [5]. In Spain, 

road inspections are performed manually, incurring high costs and relying on expert decision-making for repairs. 

Conversely, countries like China face challenges due to their extensive road networks, making timely detection 

crucial to prevent further deterioration and accidents [6]. 
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Automated road damage detection, employing techniques such as vibration sensors, LiDAR sensors, and image-

based methods, is an active area of research [7]. Deep learning is commonly used in image-based techniques to 

recognize various types of road degradation, requiring diverse datasets from multiple sources [8], [9]. Collaborative 

efforts among universities and research centers aim to develop effective solutions to this critical issue [10]. 

This paper presents an innovative approach for automated road damage detection using Unmanned Aerial Vehicle 

(UAV) images and advanced deep learning techniques. Leveraging YOLOv7 and introducing YOLOv8, the study 

demonstrates enhanced precision in road damage prediction, showcasing the potential of UAVs and deep learning 

for efficient and accurate infrastructure maintenance. 

Current road infrastructure maintenance relies on labor-intensive and risky manual data collection methods. This 

paper addresses this challenge by proposing an innovative solution using Unmanned Aerial Vehicles (UAVs) and 

advanced deep learning techniques, specifically YOLOv5, YOLOv7, and YOLOv8, to automate road damage 

detection, enhancing efficiency, and accuracy for safer transportation. 

 

2. LITERATURE SURVEY 

Maintaining road infrastructure is critical for ensuring safe and efficient transportation systems, which are essential 

for economic development. Periodic assessment of road conditions is necessary to identify damages early and 

facilitate timely repairs. Traditional manual inspection methods are often labor-intensive, time-consuming, and 

costly. In recent years, the integration of Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence (AI) 

techniques has shown promise in automating road damage detection processes, offering more efficient and cost-

effective solutions. This literature survey explores various approaches and advancements in road damage detection, 

focusing on techniques such as deep learning, UAV-based imaging, and sensor-based methodologies. 

Deep learning techniques have revolutionized road damage detection by enabling automated analysis of images 

captured from different sources. Jeong et al. (2020) introduced a method using YOLO (You Only Look Once) with 

smartphone images for road damage detection [9]. Their approach leverages the efficiency of YOLO for real-time 

detection, making it suitable for practical applications. Khan et al. (2022) proposed a deep learning-based 

framework utilizing UAVs for road damage detection and classification [26]. By integrating deep learning 

algorithms with UAV imagery, their method achieves accurate and efficient detection of various road damages, 

contributing to improved maintenance strategies. 

Remote sensing technologies, such as satellite imagery and crowdsensing, offer wide-area coverage for road damage 

assessment. Izadi et al. (2017) presented a neuro-fuzzy approach for post-earthquake road damage assessment using 

satellite images [10]. Their method combines genetic algorithms and Support Vector Machine (SVM) classification 

to accurately identify road damages, particularly after seismic events. Arya et al. (2022) introduced RDD2022, a 

multinational image dataset for automatic road damage detection [13]. This dataset facilitates benchmarking and 

comparison of different detection algorithms, fostering advancements in the field. 

Recent studies have explored advanced machine learning techniques to enhance road damage detection accuracy and 

efficiency. Shim et al. (2022) proposed a method combining super-resolution and semi-supervised learning with a 

Generative Adversarial Network (GAN) for road damage detection [32]. By integrating super-resolution techniques 
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and GAN-based semi-supervised learning, their approach achieves improved detection performance, especially for 

low-resolution images. Pham et al. (2020) developed a road damage detection and classification system using 

Detectron2 and faster R-CNN [37]. Their method, based on state-of-the-art object detection frameworks, 

demonstrates robust performance in accurately identifying and classifying various types of road damages. 

Despite significant advancements, road damage detection still faces several challenges, including dataset scarcity, 

domain adaptation, and real-time processing constraints. Arya et al. (2020) highlighted the state-of-the-art solutions 

and challenges in global road damage detection [36]. They emphasize the need for collaborative efforts and 

innovative methodologies to address these challenges effectively. Additionally, crowdsensing-based approaches, as 

proposed by Arya et al. (2022) [43], hold promise for leveraging collective intelligence to enhance road damage 

detection accuracy and coverage. 

The integration of UAVs, deep learning, and advanced machine learning techniques has transformed road damage 

detection, offering efficient and cost-effective solutions for infrastructure maintenance. From smartphone-based 

approaches to satellite imagery analysis, researchers have explored diverse methodologies to automate the detection 

and classification of road damages. Collaboration among researchers and ongoing advancements in AI and remote 

sensing technologies will continue to drive innovation in this critical area, ultimately contributing to safer and more 

resilient transportation systems. 

 

3. METHODOLOGY 

i) Proposed Work: 

The proposed system is an advanced pavement monitoring and road damage detection solution, designed to enhance 

the autonomous inspection of road conditions using images captured by UAVs (drones or satellites) and cutting-

edge artificial vision and intelligence technologies. Building upon prior research, this system compares and 

evaluates the performance of three YOLO (You Only Look Once) object detection algorithms –YOLOv5, and 

YOLOv7 – for precise road damage detection. Notably, YOLOv7 exhibits the highest prediction precision. The 

system harnesses a merged dataset from previous work and Crowdsensing-based Road Damage Detection 

Challenge, encompassing diverse damage classes for a comprehensive understanding of pavement damage. Data 

augmentation techniques are implemented during training to adapt to varying object sizes in images, further 

enhancing detection accuracy. In addition to identifying road damage, the system integrates operator overrides and 

suggestions to continually improve accuracy. It also offers the capability to autonomously plan inspection routes, 

eliminating the need for manual pilot operation by leveraging PIX4D for route automation. Furthermore, the 

extension of this system involves the utilization of YOLOv8, which, when trained on road damage datasets, 

demonstrates superior prediction accuracy, thus pushing the boundaries of road damage detection technology. 

ii) System Architecture: 

The automated road damage detection system utilizing UAV images and deep learning techniques consists of 

several interconnected components. Initially, UAVs equipped with high-resolution cameras and sensors capture 

images of road surfaces from multiple angles and heights. These images are then preprocessed to enhance their 
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quality and remove any noise or artifacts. Subsequently, the preprocessed images are fed into a deep learning model, 

such as a YOLO (You Only Look Once), trained specifically for road damage detection. 

The deep learning model analyzes the images to identify and classify various types of road damages, such as cracks, 

potholes, or surface deterioration. Post-processing techniques may be applied to refine the detected damage regions 

and generate comprehensive damage maps. Finally, the results are presented to end-users through a user interface, 

allowing for visualization and interpretation of the detected road damages. This system architecture combines UAV-

based data acquisition with the power of deep learning algorithms to automate the process of road damage detection, 

enabling efficient and cost-effective maintenance of road infrastructure. 

 

Fig 1 Proposed architecture 

iii) Dataset Collection: 

The dataset collection process involves extracting features from images, reading, resizing, and converting images to 

arrays while setting corresponding labels. First, image features are extracted using techniques like deep learning-

based feature extraction or traditional computer vision methods. Images are then read from the dataset, typically 

stored in a directory structure. Resizing ensures uniformity in image dimensions, enhancing computational 

efficiency and model performance. Subsequently, images are converted to arrays, transforming pixel intensities into 

numerical data suitable for machine learning algorithms. 

 

Simultaneously, labels are assigned to each image, indicating its class or category. For supervised learning tasks, 

labels are typically derived from the dataset's directory structure or accompanying metadata. This process ensures 

that each image-array pair is associated with the correct label, facilitating model training and evaluation. Proper 

dataset collection is crucial for building robust machine learning models, ensuring accurate representation and 

sufficient diversity in the training data. By adhering to these steps, a comprehensive dataset collection pipeline is 

established, laying the groundwork for effective model development and deployment. 

 

iv) Data Processing: 
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Data processing for visualization using OpenCV involves loading images using the `imread` function, which reads 

images in BGR format by default. Images can be displayed using the `imshow` function, and key functions such as 

`waitKey` and `destroyAllWindows` facilitate interaction and closing of display windows. 

Dataset preprocessing includes normalizing images to ensure consistent scale and range across features, typically 

performed by subtracting the mean and dividing by the standard deviation. Shuffling images is crucial to introduce 

randomness in the dataset, preventing bias during model training. This is often achieved by randomly rearranging 

the order of images and their corresponding labels. 

Feature extraction is a critical step where meaningful information is extracted from images to form a suitable input 

for machine learning models. Techniques such as deep learning-based feature extraction with pre-trained 

convolutional neural networks (CNNs) or traditional methods like histogram of oriented gradients (HOG) can be 

employed. Extracted features are then vectorized to form feature vectors representing each image, ready for input to 

machine learning algorithms. 

Throughout the data processing pipeline, careful attention is paid to maintain data integrity, consistency, and 

relevance, ensuring that the processed data effectively captures the underlying patterns and characteristics present in 

the dataset. 

v) Training & Testing: 

Data splitting into train and test sets is a crucial step in machine learning model development to evaluate the model's 

performance on unseen data. Typically, the dataset is divided into two subsets: the training set used to train the 

model and the test set used to assess its performance. The split is often done randomly to ensure that both sets 

represent the underlying data distribution adequately. 

Various strategies can be employed for data splitting, such as holdout validation, k-fold cross-validation, or stratified 

sampling, depending on the specific requirements of the problem at hand. Holdout validation involves randomly 

partitioning the dataset into training and test sets with a predefined ratio, commonly 70-30 or 80-20. 

Once the split is performed, the training set is used to train the model, while the test set remains untouched until the 

final evaluation stage. It's essential to ensure that the test set is representative of the data distribution to provide 

reliable performance estimates. Careful consideration should be given to factors like class imbalance, data 

heterogeneity, and potential biases during the splitting process to avoid introducing artifacts that could impact model 

performance evaluation. 

vi) Algorithms: 

YOLOv5: YOLOv5 (You Only Look Once version 5) is an object detection algorithm that processes images in real-

time, dividing them into a grid and predicting bounding boxes and class probabilities for objects within each grid 

cell, providing a fast and accurate solution for object detection tasks. 

YOLOv5 is utilized in this project due to its lightweight architecture, enabling fast and efficient object detection on 

resource-constrained devices, making it suitable for real-time road damage detection applications. 

YOLOv7: YOLOv7 (You Only Look Once version 7) is an advanced object detection algorithm that efficiently 

detects objects in images through a single forward pass. It employs deep neural networks to predict bounding boxes 

and class probabilities, offering improved precision and speed for real-time object detection. 
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YOLOv7 is chosen for its improved accuracy and performance over previous versions, offering advanced features 

and optimizations that enhance road damage detection capabilities. 

YOLOv8: YOLOv8 (You Only Look Once version 8) is an extension of the YOLO series, specifically tailored for 

road damage detection. Trained on road damage data, YOLOv8 outperforms other algorithms, demonstrating 

superior prediction accuracy. It represents a significant advancement in utilizing deep learning for precise 

infrastructure maintenance. 

YOLOv8 is selected for its cutting-edge advancements in object detection algorithms, promising superior precision 

and scalability, crucial for accurately detecting and classifying various types of road damages in large-scale datasets. 

 

4. EXPERIMENTAL RESULTS 

Accuracy: The accuracy of a test is its ability to differentiate the patient and healthy cases correctly. To estimate the 

accuracy of a test, we should calculate the proportion of true positive and true negative in all evaluated cases. 

Mathematically, this can be stated as: 

 Accuracy = TP + TN TP + TN + FP + FN. 

 

 

Fig 2 Accuracy comparison graph 

Precision: Precision evaluates the fraction of correctly classified instances or samples among the ones classified as 

positives. Thus, the formula to calculate the precision is given by: 

Precision = True positives/ (True positives + False positives) = TP/(TP + FP) 
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Fig 3 Precision comparison graph 

Recall: Recall is a metric in machine learning that measures the ability of a model to identify all relevant instances 

of a particular class. It is the ratio of correctly predicted positive observations to the total actual positives, providing 

insights into a model's completeness in capturing instances of a given class. 

 

 
Fig 4 Recall comparison graph 

F1-Score: F1 score is a machine learning evaluation metric that measures a model's accuracy. It combines the 

precision and recall scores of a model. The accuracy metric computes how many times a model made a correct 

prediction across the entire dataset. 
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Fig 5 F1 Score comparison graph 

 

Fig 6 Comparison Table 

 

Fig 7 Comparison graph 

 

Fig 8 Home page 
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Fig 9 About page 

 

Fig 10 Signup page 

 

Fig 11 Signin page 

 

Fig 12 Main page 

 

Fig 13 Upload input image 

 

Fig 14 Predict result 
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Fig 15 Upload another input 

 

Fig 16 Prediction result 

 

5. CONCLUSION 

In conclusion, this study has made significant strides in the domain of road damage detection using UAV images, 

specifically by comparing and implementing advanced YOLO architectures such as YOLOv5, YOLOv7, and 

introducing YOLOv8 with Transformer for more accurate road damage identification. The results clearly indicate 

improvements in accuracy, with YOLOv8 achieving an impressive 85%. A notable achievement of this research is 

the development of a dedicated UAV image database tailored for training YOLO models, further enriched by 

merging with the RDD2022 dataset. This comprehensive dataset has significantly improved road damage detection, 

especially for Spanish and Chinese roads, reducing class imbalance issues. While the findings are promising, there 

remains room for enhancement. 

 

6. FUTURE SCOPE 

Future research may investigate combining multispectral images and LIDAR sensor data for improved detection 

accuracy. Exploring fixed-wing UAVs offers a potential alternative approach. This study serves as a cornerstone for 

advancing road infrastructure maintenance and safety, fostering further exploration in integrating diverse image 

types and alternative UAV platforms to enhance overall performance and efficiency in road damage detection. 
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