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Abstract: Construction site safety remains a critical concern, necessitating innovative solutions to ensure the well-

being of workers. This study introduces an intelligent safety helmet detection system leveraging computer vision 

technology to monitor and enforce safety protocols in real-time. Through comprehensive analysis, we compare the 

performance of various state-of-the-art object detection architectures, including YOLOv5s, YOLOv5 - YOLO M, 

SSD, RetinaNet, FasterRCNN, YOLOv3, YOLOv4, YOLOv5 - GhostCNN, and YOLOv8. Our evaluation focuses 

on Recall,Presicion, Mean Average Presicion (mAp) aiming to provide insights into their suitability for safety 

compliance applications in the construction industry. The primary beneficiaries are construction workers, whose 

safety is paramount, alongside site managers who can optimize resource allocation and streamline monitoring 

efforts. Initial results demonstrate YOLOv5 - GhostCNN's potential to achieve over 97% mean Average Precision 

(mAp), suggesting promising avenues for further enhancing workplace safety. This research contributes to a safer 

working environment, facilitating better adherence to safety regulations and reducing the risk of construction-related 

accidents. 

Index Terms: Attention mechanism, feature fusion, safety helmet, YOLOv5s model. 

1. INTRODUCTION 

In recent years, the integration of intelligent devices and deep learning algorithms has revolutionized various 

industries, enhancing efficiency and safety measures. In sectors such as transportation and retail, technologies like 

license plate recognition and facial recognition systems have become commonplace, optimizing processes and 

ensuring security. However, the construction industry presents unique challenges due to its complex environment 

and inherent safety risks, particularly concerning falling objects. In this context, the utilization of safety helmets 

emerges as a critical measure to mitigate injuries and safeguard workers' lives. 
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The construction industry is notorious for its hazardous working conditions, with the risk of falling objects posing a 

significant threat to worker safety. Safety helmets play a vital role in minimizing the impact of such hazards and 

reducing the likelihood of severe injuries [1]. By providing a protective barrier, safety helmets serve as a crucial line 

of defense against head injuries, which can be debilitating or fatal in construction accidents. Therefore, ensuring the 

proper usage of safety helmets is paramount to safeguarding the well-being of construction workers . 

Traditionally, monitoring compliance with safety helmet regulations relied on manual supervision, which was both 

inefficient and prone to errors. Designated personnel would be tasked with observing workers on-site to identify any 

instances of non-compliance. However, the expansive nature of construction sites and the dynamic nature of work 

made it challenging to effectively enforce safety protocols [2]. Moreover, this approach resulted in the inefficient 

allocation of manpower resources, diverting personnel from other critical tasks. 

With the advent of deep learning technologies, there has been a paradigm shift in safety monitoring practices within 

the construction industry. Deep learning algorithms, particularly those based on computer vision, offer real-time 

monitoring capabilities that are well-suited to the dynamic nature of construction sites. By leveraging advancements 

in image processing and pattern recognition, these algorithms can autonomously detect and analyze various safety-

related parameters, including the proper usage of safety helmets. 

Early attempts at safety helmet detection algorithms based on You Only Look Once (YOLO) architectures 

demonstrated promising results in terms of real-time performance. However, these algorithms often suffered from 

low accuracy, limiting their effectiveness in practical applications [3]. Subsequent research endeavors focused on 

enhancing the accuracy of detection algorithms while maintaining real-time capabilities. 

Researchers have explored various strategies to improve the performance of safety helmet detection algorithms 

based on YOLO architectures. Modifications to the output dimension of classifiers aimed to reduce the number of 

parameters without sacrificing accuracy, thereby enhancing the efficiency of the algorithms [4]. Additionally, 

incorporating innovative loss functions, such as Intersection over Union (IoU) and Generalized Intersection over 

Union (GIoU), contributed to better localization and classification of safety helmets [5]. 

Furthermore, efforts to optimize the computational efficiency of detection models led to the development of 

lightweight architectures. For instance, MobileNet-based networks were utilized to compress YOLO architectures, 

resulting in reduced computational overhead while maintaining satisfactory performance [6]. These lightweight 

models not only improved inference speed but also facilitated deployment on resource-constrained devices, making 

them suitable for real-world applications in construction settings. 

Recent advancements in safety helmet detection algorithms have focused on leveraging state-of-the-art techniques 

such as attention mechanisms and novel loss functions. For instance, embedding Efficient Channel Attention (ECA) 

modules into feature fusion networks enhanced the discriminative power of detection models, leading to improved 
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performance in helmet detection tasks [7]. Moreover, the adoption of sparse training and pruning strategies further 

optimized the efficiency of detection models, paving the way for real-time deployment in resource-constrained 

environments [8]. 

Looking ahead, future research endeavors in safety helmet detection are poised to explore the integration of 

advanced deep learning techniques, such as reinforcement learning and self-supervised learning. Additionally, the 

development of robust datasets encompassing diverse environmental conditions and helmet types will be 

instrumental in training more generalized detection models. By continually refining and innovating safety helmet 

detection algorithms, the construction industry can effectively mitigate the risk of head injuries and foster a safer 

working environment for all stakeholders involved. 

In conclusion, the integration of deep learning-based safety helmet detection systems represents a significant 

advancement in ensuring worker safety within the construction industry. By leveraging computer vision 

technologies and innovative algorithms, these systems offer real-time monitoring capabilities that enhance 

compliance with safety regulations and mitigate the risk of head injuries caused by falling objects. While early 

iterations of safety helmet detection algorithms exhibited limitations in accuracy and efficiency, ongoing research 

efforts have led to substantial improvements in performance and scalability. Moving forward, continued innovation 

and collaboration between researchers, industry stakeholders, and policymakers will be essential in further 

enhancing the effectiveness and adoption of safety helmet detection systems, ultimately contributing to a safer and 

more productive construction environment. 

2. LITERATURE SURVEY 

The construction industry is inherently hazardous, with workers facing risks such as falling objects. Safety helmets 

are crucial for protecting workers from head injuries. Traditional methods of monitoring safety helmet usage rely on 

manual supervision, which is inefficient and prone to errors. However, the integration of deep learning algorithms 

and computer vision technology has enabled the development of automated safety helmet detection systems, 

revolutionizing safety monitoring practices in the construction industry. Li et al. [1] conducted a study on the impact 

resistance of industrial safety helmets. They evaluated the performance of safety helmets under various impact 

conditions to assess their effectiveness in protecting workers from head injuries. Understanding the impact 

resistance of safety helmets is essential for designing effective detection algorithms that prioritize worker safety. 

Wang et al. [2]provided a comprehensive review of safety helmet wearing detection algorithms in intelligent 

construction sites. They discussed various approaches, including deep learning-based methods, for detecting safety 

helmet usage. This review serves as a valuable resource for understanding the state-of-the-art techniques and 

challenges in safety helmet detection. 
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Jun et al. [3] proposed a safety helmet detection algorithm based on the You Only Look Once (YOLO) architecture. 

Their approach leveraged deep learning to detect safety helmets in real-time. While YOLO-based algorithms offer 

fast performance, accuracy may be compromised. This study highlights the trade-offs between speed and accuracy 

in safety helmet detection. 

Wen et al. [4] presented an improved version of the YOLOv3 algorithm for helmet detection. They introduced 

modifications to enhance the accuracy of helmet detection while maintaining real-time performance. By optimizing 

the YOLOv3 architecture, their algorithm achieved improved detection results compared to previous approaches. 

Ming et al. [5] proposed a fast helmet-wearing-condition detection algorithm based on an improved version of 

YOLOv2. Their approach focused on enhancing the efficiency of helmet detection by optimizing the YOLOv2 

architecture. By reducing computational complexity, their algorithm achieved real-time performance without 

sacrificing accuracy. 

Zhao et al. [6] introduced YOLO-S, a lightweight helmet wearing detection model tailored for resource-constrained 

environments. By utilizing a lightweight backbone network and optimizing model parameters, YOLO-S achieved 

efficient helmet detection with minimal computational overhead. This study demonstrates the importance of 

developing lightweight models for practical deployment in construction settings. 

Ding et al. [7] proposed a real-time detection algorithm for helmet wearing based on an improved version of 

YOLOX. Their approach incorporated enhancements to the YOLOX architecture, including the integration of 

advanced features and loss functions. By leveraging these improvements, their algorithm achieved accurate and 

efficient helmet detection in real-time scenarios. 

In conclusion, safety helmet detection algorithms based on deep learning and computer vision technologies have 

shown significant promise in enhancing worker safety in the construction industry. From studies on impact 

resistance to the development of lightweight detection models, researchers have made substantial contributions to 

improving the accuracy, efficiency, and real-time capabilities of safety helmet detection systems. Continued 

research and innovation in this field are essential for further advancing safety monitoring practices and ensuring the 

well-being of construction workers. 

3. METHODOLOGY 

a) Proposed Work: 

The proposed work aims to enhance safety helmet detection in construction sites through the development and 

evaluation of advanced object detection models. The primary focus is on YOLO-M (YOLO Mini), a lightweight 

variant of the YOLOv5sarchitecture optimized for accuracy and efficiency in dense construction environments. 
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Comparative analysis will be conducted against established models such as SSD, RetinaNet, FasterRCNN, 

YOLOv3, and YOLOv4 to assess YOLO-M's efficacy and performance improvements. 

We further, advanced variants of YOLOv5, including YOLOv5 - GhostCNN, YOLOv8, and YOLOv5X6, will be 

incorporated to further enhance detection capabilities. Comparative evaluations with established object detection 

methods will provide insights into the strengths and weaknesses of each model. 

Additionally, a Flask framework integrated with SQLite will facilitate user signup and signin, enabling 

comprehensive evaluation of the enhanced detection models alongside user interaction capabilities. This approach 

will ensure a holistic assessment of the proposed system's efficacy in real-world scenarios, with a focus on both 

technical performance and user experience. 

b) System Architecture: 

 

Fig 1 Proposed Architecture 

The system architecture begins with dataset input, followed by image preprocessing and data augmentation to 

enhance model robustness. Multiple object detection models are built, including YOLO-M, SSD, RetinaNet, 

FasterRCNN, YOLOv3, YOLOv4, and advanced variants like YOLOv5 –GhostCNN, YOLOv8, and YOLOv5X6. 

Performance evaluation metrics such as precision, recall, and mean average precision (MAP) are used to assess each 

model's effectiveness. The best-performing algorithm is selected for safety helmet detection, ensuring optimal 

accuracy and reliability in real-world scenarios. 

c) Dataset: 

The dataset used for this project was created using Labelbox JSON annotations converted to YOLOv5 PyTorch 

format through the Roboflow platform. The dataset consists of images captured from construction sites, depicting 

various scenarios relevant to safety helmet detection. Each image is accompanied by corresponding annotations 

indicating the presence and location of safety helmets worn by workers. 
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The dataset encompasses diverse environmental conditions and worker activities, including different lighting 

conditions, weather conditions, and angles of view. This diversity ensures robustness and generalization of the 

trained detection models to various real-world scenarios encountered in construction sites. 

Annotations in YOLOv5 PyTorch format provide bounding box coordinates for each safety helmet detected in the 

images, along with class labels indicating the presence of safety helmets. These annotations are crucial for training 

the detection models to accurately identify and localize safety helmets within the images. 

The dataset is curated to include a sufficient number of images and annotations to facilitate effective training of the 

detection models. Furthermore, the dataset is split into training, validation, and testing subsets to enable rigorous 

evaluation and validation of the trained models' performance. This comprehensive dataset serves as the foundation 

for developing and evaluating the safety helmet detection system in construction environments. 

d) Image Processing: 

Converting to Blob Object:The first step in image processing is to read the input image and convert it into a blob 

object. A blob object is a preprocessed image that is ready to be fed into a deep learning model. This involves 

resizing the image to the required input dimensions, scaling pixel values to a specific range, and optionally 

performing mean subtraction and normalization. 

Defining the Class:Before processing the image, it's essential to define the class labels for the objects of interest. In 

this case, the class label could be "safety helmet," indicating that we're interested in detecting safety helmets within 

the images. 

Declaring the Bounding Box: Once we have the input image and class labels defined, we need to parse the 

annotation file corresponding to the image. This annotation file contains bounding box coordinates for the objects of 

interest, such as safety helmets. These bounding box coordinates define the regions of interest within the image 

where the safety helmets are located. 

Convert the Array to a NumPy Array:After obtaining the blob object and bounding box coordinates, we convert 

them into NumPy arrays for further processing. NumPy arrays provide efficient and convenient methods for 

manipulating numerical data, making them ideal for handling image data and annotations. 

Loading the Pre-trained Model Steps: 

Reading the Network Layers:To load the pre-trained model, we need to read its configuration file and weights. 

These files contain the architecture and parameters of the neural network, respectively. We use OpenCV's 

`cv2.dnn.readNet()` function to load the model, providing the paths to the configuration file and weights. 
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Extract the Output Layers:Once the model is loaded, we extract the names of the output layers. These output layers 

contain the predictions made by the model, including the bounding box coordinates and class probabilities for 

detected objects. Extracting these layer names allows us to access the model's predictions during inference. 

Image Processing Steps (Continued): 

Appending the Image and Annotation File:After loading the input image and its corresponding annotation file, we 

have both the image data and the ground truth bounding box coordinates. This allows us to synchronize the image 

and its annotations for processing and evaluation. 

Converting BGR to RGB: In some cases, the input image may be in BGR (Blue-Green-Red) format, while many 

deep learning frameworks expect images in RGB (Red-Green-Blue) format. Therefore, we may need to convert the 

image to RGB format to ensure consistency in color representation. 

Creating the Mask: Using the bounding box coordinates extracted from the annotation file, we create a mask to 

isolate the regions of interest containing the safety helmets within the image. This mask helps focus the model's 

attention on relevant areas during training and inference. 

Resizing the Image:Before feeding the image into the pre-trained model, we resize it to the required dimensions 

specified by the model's input layer. Resizing ensures that the input image matches the expected input size of the 

model. 

Data Augmentation Steps: 

Randomizing the Image:Data augmentation involves applying random transformations to the input image to increase 

the diversity of the training data. These transformations may include random flipping, scaling, and brightness 

adjustments to simulate variations in real-world scenarios. 

Rotating the Image:Another data augmentation technique is rotating the image by a random angle. This helps the 

model learn to detect objects from different viewpoints and orientations, making it more robust to variations in 

object alignment. 

Transforming the Image:Affine transformations such as translation, rotation, and scaling can further augment the 

dataset by simulating changes in perspective and viewpoint. By applying these transformations, we increase the 

variability of the training data, leading to better generalization performance of the model. 

By following these detailed image processing and data augmentation steps, we can preprocess the input data, load 

the pre-trained model, and augment the dataset effectively for training and evaluating a robust safety helmet 

detection system for construction sites. 
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e) Algorithms: 

YoloV5s : YOLOv5s is an object detection algorithm that divides an image into a grid and predicts bounding boxes 

and class probabilities for each grid cell. To implement YOLOv5s, we first load the pre-trained model. Then, we 

preprocess the input image by resizing it to the model's input dimensions. Next, we perform a forward pass of the 

preprocessed image through the YOLOv5smodel to obtain predictions. These predictions include bounding box 

coordinates and class probabilities for detected objects. After obtaining predictions, we apply post-processing steps 

such as non-maximum suppression to remove redundant bounding boxes, ensuring that only the most confident 

detections are retained. Finally, we return the refined detections for further analysis or visualization. 

 

Fig 2 YoloV5s 

Yolo M: YOLO-M is a customized variant derived from YOLOv5s, specifically tailored for safety helmet detection. 

It incorporates improvements such as a lightweight backbone network (MobileNetV3), attention mechanisms 

(BiCAM), and multi-scale feature fusion (Res-FPN) to enhance accuracy and efficiency in identifying safety 

helmets. The algorithm begins by loading the customized YOLO-M model. Then, we preprocess the input image 

and perform a forward pass through the YOLO-M model. After obtaining predictions, we apply post-processing 

steps, including non-maximum suppression, to filter redundant detections and refine the results. The refined 

detections are then returned for further analysis or visualization. 

 

Fig 3 Yolo M 

YoloV4: YOLOv4 is an evolution of the YOLO series, known for its improved accuracy and efficiency. To 

implement YOLOv4, we start by loading the pre-trained model. We then preprocess the input image and perform a 
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forward pass through the YOLOv4 model. After obtaining predictions, we apply post-processing steps such as non-

maximum suppression to filter redundant detections and refine the results. Finally, we return the refined detections 

for further analysis or visualization. 

 

Fig 4 YoloV4 

YoloV3: YOLOv3 is an earlier version of the YOLO algorithm that introduced the concept of anchor boxes for 

bounding box prediction. The algorithm begins by loading the pre-trained YOLOv3 model. Then, we preprocess the 

input image and perform a forward pass through the YOLOv3[4] model. After obtaining predictions, we apply post-

processing steps, including non-maximum suppression, to filter redundant detections and refine the results. The 

refined detections are then returned for further analysis or visualization. 

 

Fig 5 YoloV3 

YoloV5 GhostCNN:YOLOv5 GhostCNN incorporates the GhostNet backbone, a lightweight neural network 

designed for efficient computation. To implement YOLOv5 GhostCNN, we start by loading the pre-trained model. 

We then preprocess the input image and perform a forward pass through the YOLOv5 GhostCNN model. After 

obtaining predictions, we apply post-processing steps such as non-maximum suppression to filter redundant 

detections and refine the results. Finally, we return the refined detections for further analysis or visualization. 
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Fig 6 YoloV5 GhostCNN 

SSD: SSD is an object detection algorithm that uses a set of default bounding boxes with different aspect ratios to 

predict object locations. To implement SSD, we first load the pre-trained model. Then, we preprocess the input 

image and perform a forward pass through the SSD model. After obtaining predictions, we apply post-processing 

steps such as non-maximum suppression to filter redundant detections and refine the results. Finally, we return the 

refined detections for further analysis or visualization. 

 

Fig 7 SSD 

RetinaNet:RetinaNet introduces the focal loss to address the class imbalance issue in object detection. To 

implement RetinaNet, we start by loading the pre-trained model. We then preprocess the input image and perform a 

forward pass through the RetinaNet model. After obtaining predictions, we apply post-processing steps such as non-

maximum suppression to filter redundant detections and refine the results. Finally, we return the refined detections 

for further analysis or visualization. 
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Fig 8 RetinaNet 

FasterRCNN: FasterRCNN is a two-stage object detection algorithm. To implement FasterRCNN, we first load the 

pre-trained model. Then, we preprocess the input image and perform a forward pass through the FasterRCNN[14] 

model. After obtaining region proposals using the region proposal network (RPN), we refine these proposals using 

the classifier network. Finally, we extract predictions, apply post-processing steps such as non-maximum 

suppression, and return the refined detections for further analysis or visualization. 

 

Fig 9 FasterRCNN 

YOLOV8: YOLOv8 introduces several improvements for object detection, including mosaic data augmentation, 

anchor-free detection, a C2f module, a decoupled head, and a modified loss function. To implement YOLOv8, we 

start by loading the pre-trained model with these enhancements. Then, we preprocess the input image and perform a 

forward pass through the YOLOv8 model. After obtaining predictions, we apply post-processing steps such as non-

maximum suppression to filter redundant detections and refine the results. Finally, we return the refined detections 

for further analysis or visualization. 

 

Fig 10 YoloV8 

YOLOV5x6: YOLOv5X6 is an extension of the YOLO object detection framework with a deeper and more 

complex architecture. To implement YOLOv5X6, we start by loading the pre-trained model. Then, we preprocess 

the input image and perform a forward pass through the YOLOv5X6[18] model. After obtaining predictions, we 



  ISSN 2277-2685 

IJESR/June-2024/ Vol-14/Issue-2s/15-32 

Mr.P.Murthuja   et. al., / International Journal of Engineering & Science Research 

 

26 
 

apply post-processing steps such as non-maximum suppression to filter redundant detections and refine the results. 

Finally, we return the refined detections for further analysis or visualization. 

 

Fig 11 YoloV5x6 

 

4. EXPERIMENTAL RESULTS 

Precision: Precision evaluates the fraction of correctly classified instances or samples among the ones classified as 

positives. Thus, the formula to calculate the precision is given by: 

Precision = True positives/ (True positives + False positives) = TP/(TP + FP) 

 

 

Fig 12  Precision Comparison Graph 

Recall:Recall is a metric in machine learning that measures the ability of a model to identify all relevant instances of 

a particular class. It is the ratio of correctly predicted positive observations to the total actual positives, providing 

insights into a model's completeness in capturing instances of a given class. 
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Fig13  Recall Comparison Graph 

MAP:Mean Average Precision (MAP) is a ranking quality metric. It considers the number of relevant 

recommendations and their position in the list. MAP at K is calculated as an arithmetic mean of the Average 

Precision (AP) at K across all users or queries. 

 

 

Fig 13 MAP Comparison Graph 
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Fig 14 Performance Evaluation Table 

 

Fig 15 Home Page 

 

Fig 16 Registration Page 

 

Fig 17 Login Page 
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Fig 18 Upload Input Image 

 

Fig 19 Final Outcome 

5. CONCLUSION 

In conclusion, the development of an automated safety helmet detection system represents a significant advancement 

in workplace safety within the construction industry. Through the utilization of computer vision technologies and 

cutting-edge algorithms such as YOLO variants, customized YOLO-M model, SSD, RetinaNet, and FasterRCNN, 

the project has effectively addressed the critical need for real-time monitoring of safety helmet compliance. The 

extension to explore additional algorithms like YOLOv5x6 and YOLOv8 further enhances the system's robustness 

and accuracy. By integrating Flask with user authentication, the project ensures a user-friendly interface for testing 

and validation, facilitating practical deployment. Ultimately, these outcomes contribute tangibly to the construction 

industry by automating safety monitoring processes, aiding site managers and workers in maintaining a safer 

working environment. 

6. FUTURE SCOPE 

Looking ahead, the future scope for safety monitoring systems in the construction industry is promising. Further 

refinement of detection algorithms and architectures, such as exploring advanced variants like YOLOv5X6, holds 

the potential to enhance accuracy and efficiency in safety helmet detection, thus improving overall workplace safety. 
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Incorporating emerging technologies like edge computing and real-time analytics presents an opportunity to enable 

on-device processing, facilitating instant detection and response in dynamic environments. This advancement could 

significantly enhance worker safety by providing timely alerts and interventions. 

Expanding the scope beyond safety helmets to detect multiple safety gear items or potential hazards in construction 

sites would promote comprehensive safety measures, further mitigating risks and ensuring a safer work 

environment. 

Integration with Internet of Things (IoT) devices offers seamless monitoring and management of safety protocols. 

This integration enables proactive safety measures and automated alerts in case of non-compliance, ultimately 

enhancing overall safety management in construction sites. By embracing these advancements, safety monitoring 

systems can continue to evolve, ensuring continuous improvement in workplace safety standards. 
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