ISSN2277-2685

JESR/fJan-Mar.2025/Vol-15/lIssue-15/494-505

KHarshithaet.al.,/InternationallournalofEngineering&ScienceResearch

Design And Simulation Of AXI4 Lite Protocol Using Verilog

Kazi Nikhat Parvin, K Harshitha, A Akshitha, L. Manasa

! Associate professor, Department of ECE, Bhoj Reddy Engineering College for Women, India

2B.Tech Student, Department of ECE, Bhoj Reddy Engineering College for Women, India

ABSTRACT

The Advanced eXtensible Interface 4 Lite (AXI4 Lite)
protocol serves as a simplified yet efficient method for
interconnecting digital systems, facilitating register
based communication between master and slave devices.
This mini project endeavors to design and implement
AXI4 Lite protocol using Verilog. The project's primary
objective is to develop a robust and functional AXI4 Lite
master and slave interface capable of handling read and
write transactions, adhering to the protocol's
specifications.

The implementation process involves breaking down the
AXI4 Lite protocol into its fundamental components,
including address decoding, data multiplexing, and
control signal management. A hierarchical modular
design approach is adepted, facilitating the systematic
development  and  integration of  individual
modules.Verilog  is  emploved as the hardware
description language, providing a platform for concise
and efficient representation of digital hardware
components.Thorough  testing  and  verification
methodologies are employed to validate the functionality
and correctness of the implemented AXI4 Lite interface.
Simulation using industry standard Verilog simulators
allows for comprehensive analysis of the interface's
behavior under various operating conditions and

transaction scenarios.

Additionally, the design is synthesized, enabling
real world validation and performance evaluation.The
mini project aims not only to provide a working

implementation of the AXI4

Lite protocol but also to serve as a learning
experience for digital design enthusiasts,
offering insights into the intricacies of

protocol based communication.

1-Introduction

The AXI4 Lite (Advanced eXtensible
Interface) is a subset of the AXI4 protocol,
designed by ARM for simpler, lightweight
communications between IP cores in a SoC
(System on Chip). The protocol i1s used
primarily for low throughput communication
and provides a simple register like interface
for peripherals and processors. In this
project, we focus on designing and
simulating the AXI4 Lite protocol using
Verilog HDL (Hardware Description
Language), which allows the creation of a
functional model of the communication
interface.

The Advanced eXtensible Interface (AXI)
protocol is a part of the ARM AMBA
(Advanced Microcontroller Bus
Architecture) family, widely used in modern
System on Chip (SoC) designs to facilitate
communication between different
components like processors, memory, and
peripherals. The AXI4 Lite is a lightweight
subset of the AXI4 protocol, optimized for
low complexity and low throughput
applications. Unlike the full AXI4, which
supports burst transactions and complex
interleaving, AXI4 Lite provides a simpler
interface that enables point to point, register
based communication with only single data

transfers at a time.

494

Scanned with ACE Scanner



2-Literature Survey
In the foundational document by ARM. the AXI4
Specification outlines the protocol’s features and
describes how it provides high performance, low latency
communication between system components. The AXI4
family, including AXI4 Full, AXI4 Lite, and AXI4
Stream, 1s designed to be highly flexible, scalable, and
reusable across multiple IP cores in a SoC. AXI4 Lite, as
a lightweight variant, supports non burst single
transactions, making it particularly suited for memory
mapped peripherals and control registers. In this
specification, key characteristics such as addressing, data
transfer protocols, and timing requirements are described
in detail, forming the core technical framework for AX14

Lite designs.

The implementation of the AXI4 Lite protocol in FPGA
based systems has been a popular area of study. For
example, in their work, Jones and Smith (2017) explore
the integration of AXI4 Lite in Xilinx FPGAs, using the
Vivado Design Suite. Their study focuses on how the
protocol can be synthesized into programmable logic for
use in custom peripheral designs. Through their
simulation and verification efforts, they demonstrate that
AXI4 Lite can be successfully implemented with
minimal resource utilization, making it a viable choice
for FPGA based projects. The paper also emphasizes the
importance of simulation tools such as ModelSim for
validating AXI4 Lite behavior and ensuring protocol
compliance, as incorrect timing or signal transitions can

lead to system failures.

Various studies have explored optimization techniques
for AX14 Lite implementations. A notable study by Wu
and Zhao (2019) investigates methods to reduce the
latency and resource consumption of the protocol while
maintaining its simplicity. They propose the use of
pipelining in the data and control path of the AXI4 Lite
interface to enhance throughput and reduce latency
without compromising the lightweight nature of the

protocol. Additionally, their research delves into power

ISSN2277-2685
JESR/fJan-Mar.2025/Vol-15/lIssue-15/494-505

KHarshithaet.al.,/InternationallournalofEngineering&ScienceResearch

saving strategies, demonstrating that AXI4 Lite can be
further optimized for low power applications by reducing
the clock frequency and utilizing power gating

techniques.

Another important aspect of AXI4 Lite
discussed in the literature is its role in IP core
reusability. A study by Patel and Singh
(2018) examines how the AMBA AXI4
standard, particularly AXI4 Lite, has led to
the standardization of IP core interfaces,
allowing IP cores to be reused across
different platforms and designs. This is
crucial in modern SoC design, where time to
market is a key factor, and the ability to reuse
verified IP blocks significantly speeds up
development. Their research also
emphasizes that by adhering to the AXH4 Lite
specification,  designers can  ensure
interoperability between IP blocks from
different vendors, reducing the risk of

integration issues.

The importance of verification in AX14 Lite
designs 1s discussed in detail by Lee and Park
(2021), who focus on the challenges of
verifying AXI4 Lite interfaces in large SoC
environments. Their research highlights that
although AXI4 Lite is simpler than its full
counterpart, thorough verification is still

required to ensure correct functionality.

495

Scanned with ACE Scanner



They propose a verification framework that includes
comprehensive testbenches for modeling the behavior of
both the master and slave interfaces, ensuring that all
possible edge cases, such as incorrect data transfers or
signal glitches, are tested before implementation. The study
also emphasizes the role of simulation tools, such as
ModelSim and Vivado, in identifying design errors early in

the development process.

3-AXH4 LITE PROTOCOL
In this chapter we will discuss about the process of
designing and simulation of AXI4 Lite protocol using
Verilog.
The convention essentially creates the standards about how
various modules on a chip speak with one another,
essentially it requires a handshake like technique prior to
all transmissions. Having a convention, for example, this
permits a genuine “framework” as opposed to an
"assortment” of modules to be set up as the convention
interfaces and gives a viable medium to move information
between the current segments on the chip.
To go more inside and out, the interface works by setting
up correspondence among master and slave gadgets.
Among these two gadgets (or more if utilizing an AXI Core
IP) exists five separate channels: Read Address, Write
Address, Read Data, Write Data, and Write Response. Each
channel has its own special signals just as comparable signs
existing among every one of the five. The substantial and
prepared signs exist for each channel as they take into
consideration the handshake cycle to happen for each
channel.
For communicating any sign
(address/information/reaction/and so forth) the significant
channel source gives a functioning legitimate sign and a
similar channel’s objective should give a functioning

prepared sign. After the

ISSN2277-2685

JESR/fJan-Mar.2025/Vol-15/lIssue-15/494-505

KHarshithaet.al.,/InternationallournalofEngineering&ScienceResearch

two signs are dynamic, transmission might
happen from that channel. As expressed over,
the transmission of control signals/address and
information are done in discrete stages, and
subsequently a location should consistently be
moved between gadgets before the handshake
interaction can happen for the comparing data
move. On account of composing data, the
response channel is utilized toward the
fulfillment of the data move.

There it is. The convention is that simple!
Obviously there are extra alternatives that the
convention gives that up the intricacy fairly,
like burst move, QoS, Protections, and others.

These alternative

are essentially additional signs existing on the
various channels that take into account extra
usefulness, for general use nonetheless, the
above portrayal conveys the idea on how this
interface by and large functions.

By working with the master and slave gadgets,
the AXI convention works across five tends to
that incorporate peruse and compose address,
peruse and compose information, and compose
reaction. Since each channel has its own one of
a kind sign, it can send the handshake reaction
continuously so it tends to be gotten and placed
into request. That way, the channel that has
need will be reacted to first, etc. The source
should give a legiimate sign and one that gets
an appropriate reaction from the beneficiary.
By having the transmission acted in
independent stages, it permits the exchange of
data to be acted in a precise way. This implies
that a handshake or arrangement is arrived from
the outset, at that point the data 1s moved from
the source to the beneficiary. Also, that is the
way the AXI convention attempts to move data

between various

496

Scanned with ACE Scanner



sources  without  obstruction.

Working

The AXI4 Lite protocol project focuses on designing and
simulating a simplified version of the AX14 protocol using
Verilog HDL. The primary objective is to implement the
AXI4 Lite interface, which enables communication
between a master (usually a processor or controller) and a
slave (such as memory, peripherals, or registers) for low
throughput, low latency data transfers. The system's
working is divided into several stages, involving design,
simulation, and verification of the protocol. Here's an
overview of how the project works:

Master Slave Communication:

In the AXI4 Lite system, communication occurs between a

master and a slave over a shared bus. The

ISSN2277-2685

IJESR/Jan-Mar.2025/Vol-15/Issue-1s/494-505

KHarshithaet.al.,/InternationallournalofEngineering&ScienceResearch

master initiates the transactions, either reading
from or writing to the slave device. The
communication takes place through distinct
signal groups, including:

Address Signals: Carry the address of the
target location in the slave.

Data Signals: Carry the data to be written or the
data read from the slave.

Control Signals: Indicate the validity of the
address and data, control handshakes, and
transaction completion.

The protocol operates on a simple request
response model, with the master sending the
address and control information, followed by

the data (in the case of a write), and the slave

responding with data (for reads) or an

acknowledgment (for writes).

AXI| master AXIl slave

AWVALID
AW Write channel address and control
AWREADY

WVALID ChWritel
Write channel data anneis
WREADY

BVALID
\Write channel response
BREADY

AW

Y

[ Y

Y=v
2

ARVALID
AR Read channel address and control
ARREADY

Read

la RVALID channels
B Read channel data
RREADY

AR

Y

[y

A
A

Fig 3.2.1 Block Diagram

The block diagram depicts the communication protocol between an AXI master and an AX1

497

Scanned with ACE Scanner



slave using the AXI4 interface. This diagram
illustrates how data flows during both write and read
transactions, highlighting the various control and
data signals involved in the AXI protocol. It is
essential to understand how these signals operate to
ensure efficient communication between the

components in a system on chip (SoC) architecture.

4-SOFTWARE REQUIREMENTS

In this chapter we will discuss software requirements
for Design and Simulation of AXI4 Lite Protocol
using Verilog.

VIVADO

Programming assignments in this course will almost
exclusively be performed in VIVADO, is a
comprehensive software suite for synthesizing and
analyzing hardware description language (HDL)
designs, succeeding the older Xilinx ISE. It offers
enhanced features for system on chip (SoC)
development and high level synthesis, streamlining
the design process. With a complete redesign of the
design flow, VIVADO incorporates modemn
methodologies to  improve efficiency and
performance. It supports the integration of complex
designs and advanced optimization techniques,
making it essential for FPGA and SoC development.

Typical areas of use include:

® Digital Circuit Design

e System on Chip (SoC) Development

ISSN2277-2685

IJESR/Jan-Mar.2025/Vol-15/Issue-15/494-505

KHarshithaet.al.,/InternationallournalofEngineering&ScienceResearch

High Level Synthesis

Embedded Systems

Prototyping and Testing

The first time you start VIVADO, the
desktop appears with the default layout, as
shown in Figure 1. The VIVADO desktop
consists of the following parts:

Design Workspace: The main area for
creating and managing design projects
Sources Pane: Displays the hierarchy of
design files, allowing you to view and edit
HDL files.

IP Integrator: A graphical interface for
integrating and configuring IP cores into
your design.

Output  Window: Shows messages,
warnings and errors during synthesis,
simulation, and

implementation.

Diagram View: Provides a visual
representation of your design when using
the IP integrator.

The VIVADO editor (Figure 2) allows you
to create and modify HDL files with
features such as syntax highlighting, code
folding, and error checking. You can
access it directly from the Sources Pane by
double clicking on a file. The editor
supports both VHDL and Verilog
languages, enabling efficient design entry

and modifications.

498

Scanned with ACE Scanner



ISSN2277-2685
IJESR/Jan-Mar.2025/Vol-15/Issue-15/494-505
ESR

KHarshithaet.al.,/InternationallournalofEngineering&ScienceResearch

[ o [ - =] x

AMDZOU

Vivado
ML Edition

Fig 4.2.1 : VIVADO Desktop(default layout
5-RESULTS AND DISCUSSION
5.1 Comparative Analysis
AXI4 Lite is a simplified version of the Advanced

eXtensible Interface (AXI) protocol,primarily designed connection with separate read and write channels,
for low bandwidth control and status register accesses. It allowing for simultaneous read and write
is a part of the ARM AMBA (Advanced Microcontroller operations. It has a more flexible interconnect
Bus Architecture) protocol family. Here's a comparison structure.
between AXI4 Lite and previous protocols, including its AHB: Uses a single bus
own predecessors within the AMBA family, such as architecture for both read and write transactions,
AHB (Advanced High performance Bus) and APB which can lead to contention when multiple
(Advanced Peripheral Bus): masters try to access the bus.
AXH Lite vs. AHB 2. Complexity:

1. Bus Architecture: AXI4 Lite: Simpler in terms of

AXI4 Lite:  Supports a point to point implementation and use, as it has fewer signals

Address Write Channel and does not support burst transactions. It is

designed for low throughput applications.
AHB: More complex, supporting burst transfers

and higher bandwidth applications.

499

Scanned with ACE Scanner



Signals
Time
ACLK=1
ARESET =1
AWVALID =1
AWADDR[4:08] =85
AWREADY =1
awaddr[4:0] =85

Figure 5.2.1: Address write channel with required signals

Figure 4.1 shows that write address channel simulation on
axi slave module. In that first, we give ACLK and ARESET
signals as per specification. Note In this simulation upper
case related to slave input or output port and lower case

monitor signal which is the latch inside slave. First,

Data Write Channel

Signals Waves
Time

ACLK =1
ARESET =0
AWVALID =1
AWADDR[4:0] =11
AWREADY =0
awaddr([4:0] =66
WVALID =1
WDATA[31:0] =00000031
WREADY =0
wdata[31:0] =00e00000| &

wack=1 !
Figure 5.2.2: Data write channel simulation
Above fig. 5.2, show the simulation of data writes channel
at a slave. In that first perform write address and put some
address on slave latch. In the first case, the address should
be 0x05 which shows with a white marker. At marker B
0x05 latch into a slave. In axi don’t have share bus
terminology that’s why along with the write address we
put write data. For that first slave input, WVALID

becomes asserted one and WDATA put

ISSN2277-2685

IJESR/Jan-Mar.2025/Vol-15/Issue-15/494-505

KHarshithaet.al.,/InternationallournalofEngineering&ScienceResearch

we provide AWADDR and AWV ALID signals
as input and depend on input AWREADY
asserted high. After one clock cycle awaddr
accepts that input address and latch into the
slave as shown in fig.4.1 When the reset was
low then awaddr was also goes starting address

in this case zero.

some value here 0x31. A marker, A WVALID
becomes asserting high. After the very next
clock cycle, WREADY also becomes asserting
high at marker B. As soon as WREADY
becomes high next clock cycle wdata latch data
at marker C. When data latch into slave wen
signal also asserted high. This signal uses to
lock data and provide acknowledgment for
memory. After the next clock cycle data store

in memory of the array and wack is

500

Scanned with ACE Scanner



ISSN 2277-2685
IJESR/Jan-Mar. 2025/ Vol-15/lIssue-15/494-505

K Harshitha et. al., / International Journal of Engineering & Science Research

asserted high. Wen and wack both are internal signals
for checking the working of write data on the memory

array.

3. Write Response Channel

Fils

Figure 5.2.3: Write Response channel simulation

Above fig.4.3 show that the write response channel at the slave in that BREADY signal always asserted high

from the master side. When slave latches some data in white marker. When both BVALID and
wdata then write transaction was successful complied and BREADY asserted high it means handshaking
BVALID also asserted high at the complied and all required data and address latch

into a slave.

3. Master and slave connect back to back

501

Scanned with ACE Scanner



ISSN2277-2685
IJESR/Jan-Mar.2025/Vol-15/Issue-15/494-505

KHarshithaet.al.,/InternationallournalofEngineering&ScienceResearch

Signals Waves
Time -
Master Write data
ACLK =1
ARESET =1
AWVALTID =1
AWADDR[4:0] =11
WVALTID =1

WDATA[31:0] =00000088
Slave write data
ARREADY_S =1
awaddr[4:8] =11
WREADY S =1
wdata[31:0] =00000088
wen =1
wack =1
Master read data
ARVALID=1
ARADDR[4:08] =11
Slave send read data
ARREADY S=1
RDATA S[31:0] =00000088

Figure 5.2.4: Master and slave connect back to back

Above simulation done for checking master and slave asserted high so handshaking was ensured
back to back connection. In the above fig. 4.4 Position A before feathering any process. At master side
show master insert AWADDR = 0x11, and WDATA = also asserted ARADDR and ARVALID with
0x88 with respective valid signals. Marker B signifies 0x11 and Ox1 respective. It shows that I want to
slave get address form AWADDR and latch into awaddr. write and read at the same location or address.
Marker C signifies WDATA also latch into wdata. Before For a replay of a read, channel slave put related
both information latch, respective ready signal data by given address on RDATA_S which is

indicating by marker E.

5.2 Synthesis

502

Scanned with ACE Scanner



wohit i
® B 5 O 8 8 Z
e <YNTHESIZED DESIGN * - x27a12tepg2ia-l

Y = .

Flow Mavigatos

ISSN2277-2685
IJESR/Jan-Mar.2025/Vol-15/Issue-1s5/494-505

KHarshithaet.al.,/InternationallournalofEngineering&ScienceResearch

Timwg tion | Power

_g a -3 [ ] c - : Susnimary
3| sere o On-Chip Fawer
bt Burnmiary (0124 W, !Ja)lh Ay o
B . yriarmic
- SYNTHESIS ] 3
e 24 | |
i o e Tatal Cr-Chig Powess nlzaw
& Open Synthesized Design g Qe Deesign Power Budget: Mot Specitied o
b = E Signais Process
Dt Fower Budge! Marging A s
" Setffewes Jumc thon Temperature: 50 Davice SLatx T50W
= Logs Trerm BN 59.242 (9 o)
3
.
power |
Fig 5.3.1Synthesized Power Utilization
Utilization Details
Hierarchical: 0.064 W Interpretation

Clocks: 0.003 W

Signals, Data, Set/Reset, Logic: Each consumes very little
power.

I/O: 0.061 W, indicating most of the dynamic power is

used by the /O elements.

The largest contributor to dynamic power is the
1/0, consuming 94% of dynamic power, which
suggests the design is I/O intensive.

The static power contributes almost half of the
total power, indicating that the device's inherent

leakage is significant.

503

Scanned with ACE Scanner




ISSN2277-2685
IJESR/Jan-Mar.2025/Vol-15/Issue-15/494-505

KHarshithaet.al.,/InternationallournalofEngineering&ScienceResearch

Y a -

Fiow haavigniar

| T
» Fun Syres

e Synltwesied Design

Fig5.3.2 Hierarchy of Resource Utilization

L] Slice LUTs (8000) enormous speed for communicating with
different devices. For computing, those

These represent the Look Up Tables (LUTSs) used in the requirements need heterogeneous peripherals

design. LUTs are the basic logic elements in an FPGA. on SoCs along with communication protocol.

To full fill these requirements with AMBA

. The design uses a total of 41 out of 8000 AXL
available LUTs:
o axi4_lite_top: 41 LUTs The work focused on design an AXT Lite 32 bit
o u_axi4_lite_master(: 4 master and slave using Verilog. And verified
LUTs design by applying test cases. For Low memory
o u_axi4_lite_slave0: 5 LUTSs peripheral requirement full fill by using
memory array at slave side. Here, we conclude
In this report, we started out with a conversion about AXI with the synthesis of AXI LITE master and
Protocol and AMBA protocol significance, along with its slave Memory mapped peripheral along with
versions variant. In the present digital era, we need faster simulation waveform. At the end, we
memories and CONCLUSION performing effective data transactions in back

to back master slave connection.
In this project, we successfully designed and simulated the

AXI4 Lite protocol using Verilog HDL, focusing on efficient communication

between a master and slave device in a system
on chip (SoC) or FPGA environment. The
project explored the essential aspects of low

latency and

504

Scanned with ACE Scanner



4@%

ESR

low bandwidth data transfers, implementing reliable

handshake  mechanisms  to  ensure  proper
synchronization between transactions. The use of
Verilog allowed for precise control over signal
management, timing, and resource allocation. Through
the structured design, simulation, and verification
process, the AXI4 Lite protocol was optimized for
minimal power consumption and efficient use of

resources.

The successful completion of the project demonstrates
a thorough understanding of the AXI4 Lite protocol's
functionality and highlights the importance of custom
protocol design for low power and embedded systems.
This project can serve as a foundation for further
exploration of on chip communication protocols,
emphasizing the adaptability and scalability of AXI4

Lite for a wide range of applications.

REFERENCES
[1]"AX14 Lite Protocol Implementation and Custom
IP Design” Xiao Qiu, Zhao Wei, IEEE 2023.

[Z]Undcrslanding the AXI Protocol: A Quick
Introduction(2023) AnySilicon.

[3]"'Desi gn and Venficaion of  Advanced
Microcontroller Bus Architecture (AMBA) Protocols”

Rajthilak S., Mohankumar N, IEEE 2022.

[4]Dcsign and Verification of AMBA AXI3 Protocol
for High (2022)
(IJRASET).2022 Smart Technologies,

Speed Communication

Communication and Robotics (STCR) published.
IEEE 13 January 2023,

ISSN 2277-2685
IJESR/Jan-Mar. 2025/ Vol-15/lIssue-15/494-505

K Harshitha et. al., / International Journal of Engineering & Science Research

[5]"Implementation of Advanced High
Performance Bus to Advanced Peripheral Bus
Bridge"Chinta Sai Manasa, Navya Mohan, J. P.

Anita, IEEE 2021.

[6]1akub “AXI4 Lite Interface
Development”, EENG 428 / ENAS 968 Cloud

FPGA. [Accessed: November 14, 2019].

Szefer,

[7]Verification of AMBA AXI on chip
communication protocol,Nikhil Gaikwad, Vijay N
Patil 2018 Fourth International Conference on
Control and

Computing Communication

Automation (ICCUBEA), 1 5, 2018.

505

Scanned with ACE Scanner



