
 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/990-998

Akkaloori Yamini et. al., / International Journal of Engineering & Science Research

990

Optimized VR Video Offloading via Deep Reinforcement

Learning

AVS Radhika1, Akkaloori Yamini2, Dodla Sathwika3

1Associate professor, Department of CSE, Bhoj Reddy Engineering College for Women, India.

2,3B.Tech Student, Department of CSE, Bhoj Reddy Engineering College for Women, India.

ABSTRACT

In recent years, eXtended Reality (VR) applications

have been widely used across diverse sectors such as

tourism, healthcare, education, and manufacturing.

Such apps are now available on mobile devices,

wearable devices, tablets, and similar platforms.

Mobile devices often have limitations regarding battery

capacity and computing power, which restricts the

variety of supported apps and diminishes the user

experience. An viable solution to these challenges is to

transfer the computation to cloud servers. The

fundamental restriction of cloud computing is the

considerable distance between the processing server

and the end user, which might lead to unacceptable

latency for several mobile XR applications. To address

these limitations, Multi-access Edge Computing (MEC)

is proposed to deliver mobile computing, network

control, and storage services to the network peripheries

(such as base stations and access points) to enable the

deployment of computation-intensive and latency-

sensitive applications on resource-constrained mobile

devices. This study presents a Deep Reinforcement

Learning-based offloading strategy for XR applications

(DRLXR). The issue is articulated as an optimization

equation for a utility function that considers both

energy consumption and execution latency at devices,

using the Markov Decision Process (MDP) paradigm

for decision-making. The Deep Reinforcement

Learning (DRL) approach is then used to train and

ascertain the near-optimal offloading option for mobile

XR gadgets. The proposed DRLXR system is evaluated

in a simulated environment and compared with other

innovative offloading techniques. The simulation

findings demonstrate that our suggested approach

surpasses its alternatives for overall execution delay

and energy usage.

Keywords— eXtended Reality, Offloading, Multi-

access Edge Computing, Deep Reinforcement

Learning, Energy efficiency,

Quality of Service

INTRODUCTION

eXtended Reality (XR) apps use the newest

advancements in 5G and subsequent network

connectivity. XR is described as the integration of

virtual three-dimensional objects with real-world

content, experienced via smart devices such as portable

smartphones or head-mounted displays. XR is

classified as Augmented Reality (AR), Mixed Reality

(MR), or Virtual Reality (VR) based on the equilibrium

between virtual content and reality. Nonetheless,

irrespective of the categorization, there is a significant

exponential growth in XR applications across several

domains, including healthcare, tourism, education, and

manufacturing.

Figure 1 depicts a general XR system, with the

following fundamental components:

• Input sensors that gather data using different types of

integrated or auxiliary sensors, including gyroscopes,

location sensors, cameras, etc. Bao Trinh Nguyen and

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/990-998

Akkaloori Yamini et. al., / International Journal of Engineering & Science Research

991

Gabriel-Miro Muntean are affiliated with the Insight

SFI Research Centre for Data Analytics and the

Performance Engineering Lab at the School of

Electronic Engineering,

Figure 1: Components of an XR system [4]

Processing modules are tasked with handling the

acquired data, executed either locally or by offloading

to a cloud server, fog server, or edge server, depending

upon the necessary computational complexity and

available processing capacity.

Outputs pertain to post-processing operations related to

the display of XR material, including the streaming of

high-definition video, the activation of actuators, and

interaction with external devices. This phase employs

head-mounted displays (HMDs) [6], portable displays

[7], and/or devices such as haptic gloves and olfactory

dispensers [8], among others.

Notwithstanding the recent rapid advancements in

hardware design and development, mobile devices used

for XR applications remain resource-constrained

relative to desktops or servers. The trade-off for

enhanced mobility and compactness is a decrease in

battery capacity and processing power. Conversely, the

intricate algorithms mostly used in video content

processing need substantial computer resources for XR

applications. A proficient method to address the

difficulty of facilitating immersive XR applications on

resource-constrained mobile devices is to offload

computations to resource-abundant devices, such as

cloud or edge servers, over the network.

Cloud computing has emerged as a successful

computer paradigm. The fundamental concept is the

centralization of computation, storage, and network

management inside the cloud, facilitated by data

centers, backbone networks, and cellular core networks

[9], [10]. To perform computations in the cloud, mobile

devices and servers must use offloading frameworks,

such as MAUI [11] or ThinkAir [12]. Recently, the

functionality of cloud computing is progressively

shifting towards the network edges, nearer to consumer

devices [13]. By using the dormant computational

power and storage capacity located at network edges,

enough resources are provided for XR apps to execute

computation-intensive and latency-sensitive operations

on user mobile devices. This notion underlies the

Multi-Access Edge Computing (MEC) paradigm,

whereby mobile devices may interact with and receive

assistance from MEC servers using several wireless

communication protocols, including LTE, 5G, WiFi, or

their combinations. Figure 2 depicts the overarching

architecture of a MEC system.

In a MEC-enhanced cloud computing environment, the

problem persists in determining which XR processing

activities should be offloaded and to which location, in

order to optimally balance XR application demands

while efficiently using device, MEC, and cloud

resources.

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/990-998

Akkaloori Yamini et. al., / International Journal of Engineering & Science Research

992

Figure 2: General architecture of a MEC-enhanced cloud computing system

Conversely, computational, storage, and network

resources. This is not straightforward, and several

solutions have been offered using heuristic or

complicated optimization methods [16].

This study presents a Deep Reinforcement Learning-

based offloading method for XR applications

(DRLXR) that allocates compute across the device,

MEC, and cloud to optimize XR application

performance and energy efficiency within specified

network resource restrictions. This publication presents

the following contributions:

• A tri-layer architecture for XR systems is proposed,

emphasizing the energy-efficient computation

offloading to minimize overall power consumption

while adhering to the stringent delay requirements of

XR applications. • The issue is articulated through the

Markov Decision Process (MDP) framework, with

near-optimal offloading decision-making derived using

a Deep Reinforcement Learning (DRL) technique. The

XR applications are segmented into discrete tasks and

modeled using Graph Theory. The suggested DRLXR

solution is assessed utilizing the Network Simulator

NS-3 and the Open Gym AI library, and it is compared

with other innovative offloading methodologies.

The remainder of this paper is structured as follows:

Section II examines several innovative offloading

techniques identified in the academic literature. Section

discusses the technological underpinnings of Deep

Reinforcement Learning (DRL).

LITERATURE REVIEW

This section examines advanced offloading strategies

suggested in the research literature. Four primary

categories of offloading methods are identified

depending on their kind of offloading: i) binary

offloading, ii) partial offloading, iii) stochastic model-

based offloading, and iv) deep learning-based

offloading.

.

Reinforcement Learning-based Offloading

Due to the scarcity of training data and the continuous

emergence of innovative applications, supervised

learning poses challenges for feature extraction. While

unsupervised learning has potential for using network

traffic attributes, achieving real-time processing

remains a challenge [28]. Conversely, the

reinforcement learning paradigm may be used without

the need of a pre-existing dataset for training. Training

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/990-998

Akkaloori Yamini et. al., / International Journal of Engineering & Science Research

993

may occur via direct contact with the learning agent and

its environment.

[29], [30], and [31] suggested using reinforcement

learning and/or integrating it with deep learning to

develop varied offloading strategies for MEC-

enhanced Internet of Vehicle (IoV) systems. In [29], Li

et al. developed an online reinforcement learning

approach using feedback and traffic patterns to

equilibrate traffic loads. To achieve effective traffic

management, a combination challenge of

communication, caching, and computation was

examined in [30]. [31] suggested an offloading strategy

that addressed the trade-off between energy usage and

latency in the IoV system. The reinforcement learning-

based method was then used to design an offloading

technique for Internet of Vehicles nodes.

The authors of [32] examined IoT nodes powered by

energy harvesting. The suggested approach enabled

IoT devices to pick the edge server and offloading rate

according on the current battery level and previously

recorded radio transmission rate. Deep Reinforcement

Learning was used to enhance offloading performance

inside a very intricate state space.

Wang et al. [33] reformulated the original combined

computation offloading and content caching problem

into a convex optimization problem and then resolved

it in a distributed and efficient manner. Hao et al. [34]

examined the offloading issue, including the

constraints of CPU and storage capacity of mobile

devices while minimizing long-term delay. The

proposed method was developed using DRL, and the

suggested approach demonstrated significant

improvements in convergence time and latency

reduction.

Wang et al. [35] presented a Meta Reinforcement

Learning-based technique (MRLCO) to optimize

offloading decisions for User Equipment (UE). Mobile

apps are structured as Directed Acyclic Graphs (DAG).

The author use Meta Reinforcement Learning (MRL)

to identify near-optimal offloading options for User

Equipments (UEs) to minimize latency. UE

applications are segmented into many sub-tasks. Each

sub-task is thereafter determined to be executed locally

or delegated to a virtual machine at the MEC server.

MRLCO surpasses the other baseline algorithms for

average latency. The primary drawback of MRLCO is

the absence of considerations for UE mobility and

energy usage.

Despite exploring several routes, the majority of

current works have failed to adopt a comprehensive

strategy that addresses the intricacies of contemporary

applications, particularly those related to XR. These

applications consist of several little jobs, and their

performance is collectively affected by network

conditions and energy usage. This article addresses this

gap.

TECHNICAL BACKGROUND

This section succinctly outlines the history pertaining

to Markov Decision Processes (MDP) and Deep

Reinforcement Learning (DRL), methodologies used in

the proposed solution.

Deep Reinforcement Learning

A hybrid system that integrates the benefits of value

function and policy search techniques, known as Actor-

Critic [38], was presented. The Actor-Critic approach

integrates a value function with a direct representation

of the policy, leading to the development of actor-critic

methods, as seen in Figure 3. The actor (policy)

acquires knowledge via feedback from the critic (value

function). Actor-Critic approaches use the value

function as a reference for policy gradients,

distinguishing them from other baseline methods by

their incorporation of a learned value function. Actor-

Critic approaches have many advantages: i) they need

little computational resources for action selection

compared to other methods; ii) they are capable of

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/990-998

Akkaloori Yamini et. al., / International Journal of Engineering & Science Research

994

learning an explicitly stochastic policy or optimum

probability for action selection. The Actor-Critic

technique is used as a decision-making framework for

job offloading in XR devices due to its benefits. This

will be further upon in the subsequent section.

Figure 3: The Actor-Critic paradigm [38]. The actor

(policy) selects an action based on the state received

from the environment. Simultaneously, the critic (value

function) obtains the state and reward from the previous

encounter. The critic uses the estimated TD mistake to

update both itself and the actor.

Figure 4: Testing Topology

PROBLEM STATEMENT

This section addresses the planned offloading

mechanism. The system architecture is first delineated,

followed by an exposition of the issue formulation

grounded on Markov Decision Processes (MDP). The

DLR-based offloading mechanism is thoroughly

introduced. All acronyms used in this study are shown

in Table I.

To assess and compare our suggested methods with

other algorithms, we use the following metrics:

• Mean energy usage (in Joules) across all devices

• Mean total duration for job completion

A. System Architecture

The overarching architecture of the MEC-enhanced

network system has three tiers: core network, edge

network, and XR devices, as seen in Figure 5.

The Operations Support System (OSS) and Multi-

Access Edge Orchestration (MEO) are positioned at the

apex of the core network hierarchy. The OSS block is

tasked with receiving client requests, assessing their

approval, and forwarding them to MEO. The MEO

oversees the MEC-based system, being aware of the

available resources, services, and installed MEC hosts,

while also monitoring the topology. MEO also

identifies optimal hosts for application deployment,

taking into account resource availability, service

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/990-998

Akkaloori Yamini et. al., / International Journal of Engineering & Science Research

995

accessibility, and restrictions like as latency.

The primary components at the Edge Network level are

the MEC Server and the MEC Platform. The latter

oversees the life cycle management of both

applications and MEC platforms, notifying the MEO of

any pertinent events. The MEC platform manager

facilitates platform configuration and application

lifecycle management operations.

Ultimately, at the base are XR devices executing

computation-intensive applications, such as deep

learning-based object identification and 360° video

streaming, which need the offloading of some activities

to MEC servers.

The following discussion pertains to the block diagram

of the MEC server and XR devices,.

• On mobile XR devices, the Application Monitor block

oversees the simultaneous operation of all apps. An

energy consumption monitor block indicates the

residual battery level and the pace of depletion. The

Channel State Information (CSI) module continuously

monitors the signal strength, quantified by the Received

Signal Strength Indicator (RSSI). All three blocks

provide information to the Local Trainer for data

collection and to the Deep RL-based choice Maker for

determining the offloading choice. The calculation is

either directed to the Offloading Scheduler module and

then sent over the Radio Transmission Unit to the MEC

server, or it is performed locally at the Local Executor

block.

At the MEC server, the Data Aggregation component

gathers all requests from devices connected to the

Radio Transmission Unit in the neighborhood and then

transmits them to the Traffic Management block. The

Traffic Management block oversees all Virtual

Machines (VM) and allocated resources for the

respective demands of mobile devices. All queries are

then processed, and the responses are sent back to XR

devices using the Remote Execution Service block. The

MEC server is also connected to Remote Cloud servers;

however, this article disregards the impact of such

exchanges.

Figure 5: System Architecture of a MEC-based Network System

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/990-998

Akkaloori Yamini et. al., / International Journal of Engineering & Science Research

996

Figure 6: Block diagram of the proposed solution

CONCLUSIONS AND FUTURE WORKS

This study presents and formulates the Deep

Reinforcement Learning-based Offloading method for

XR devices (DRLXR) inside a MEC-enabled network

context. A three-tier hierarchical network design is

proposed. The workload offloading issue at the XR

device is articulated by Deep Reinforcement Learning

(DRL). The XR devices use an Actor-Critic technique

for training and decision-making about task offloading,

informed by observed data on radio signal quality,

energy consumption, and the state of running

applications. The suggested DRLXR system is assessed

in a simulated setting and juxtaposed with other

offloading techniques. The simulation findings

demonstrate that DRLXR surpasses other options for

average energy usage and overall completion time.

Future endeavors will concentrate on a unified system

that integrates the proposed offloading strategy with

resource management at the MEC server,

accommodating diverse QoS needs.

REFERENCES

[1] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud

computing: stateof-the-art and research challenges.

Journal of internet services and applications, 1(1):7–

18, 2010.

[2] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho,

Alec Wolman, Stefan Saroiu, Ranveer Chandra, and

Paramvir Bahl. Maui: making smartphones last longer

with code offload. In Proceedings of the 8th

international conference on Mobile systems,

applications, and services, pages 49–62, 2010.

[3] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard

Mortier, and Xinwen Zhang. Thinkair: Dynamic

resource allocation and parallel execution in the cloud

for mobile code offloading. In 2012 Proceedings IEEE

Infocom, pages 945–953. IEEE, 2012.

[4] Mung Chiang and Tao Zhang. Fog and iot: An

overview of research opportunities. IEEE Internet of

Things Journal, 3(6):854–864, 2016.

[5] Andrei OJ Kwok and Sharon GM Koh. Covid-19 and

extended reality (xr). Current Issues in Tourism, pages

1–6, 2020.

[6] Dimitris Chatzopoulos, Carlos Bermejo, Zhanpeng

Huang, and Pan Hui. Mobile augmented reality survey:

From where we are to where we go. Ieee Access,

5:6917–6950, 2017.

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/990-998

Akkaloori Yamini et. al., / International Journal of Engineering & Science Research

997

[7] Abid Yaqoob, Ting Bi, and Gabriel-Miro Muntean. A

survey on adaptive 360° video streaming: Solutions,

challenges and opportunities. IEEE Communications

Surveys & Tutorials, 22(4):2801–2838, 2020.

[8] Fabio Silva, Mohammed Amine Togou, and Gabriel-

Miro Muntean. An innovative algorithm for improved

quality multipath delivery of virtual reality content. In

2020 IEEE International Symposium on Broadband

Multimedia Systems and Broadcasting (BMSB), pages

1–6. IEEE, 2020.

[9] Daniel Wagner and Dieter Schmalstieg. Handheld

augmented reality displays. In IEEE Virtual Reality

Conference (VR 2006), pages 321– 321. IEEE, 2006.

[10] John Patrick Sexton, Anderson Augusto Simiscuka,

Kevin Mcguinness, and Gabriel-Miro Muntean.

Automatic cnn-based enhancement of 360° video

experience with multisensorial effects. IEEE Access,

9:133156– 133169, 2021.

[11] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit

Sprecher, and Valerie Young. Mobile edge

computing—a key technology towards 5g. ETSI white

paper, 11(11):1–16, 2015.

[12] SangSu Choi, Kiwook Jung, and Sang Do Noh. Virtual

reality applications in manufacturing industries: Past

research, present findings, and future directions.

Concurrent Engineering, 23(1):40–63, 2015.

[13] Ravi Pratap Singh, Mohd Javaid, Ravinder Kataria,

Mohit Tyagi, Abid Haleem, and Rajiv Suman.

Significant applications of virtual reality for covid-19

pandemic. Diabetes & Metabolic Syndrome: Clinical

Research & Reviews, 14(4):661–664, 2020.

[14] Suzhi Bi and Ying Jun Zhang. Computation rate

maximization for wireless powered mobile-edge

computing with binary computation offloading. IEEE

Transactions on Wireless Communications,

17(6):4177– 4190, 2018.

[15] Yi-Hsuan Kao, Bhaskar Krishnamachari, Moo-Ryong

Ra, and Fan Bai. Hermes: Latency optimal task

assignment for resource-constrained mobile

computing. IEEE Transactions on Mobile Computing,

16(11):3056– 3069, 2017.

[16] Umber Saleem, Yu Liu, Sobia Jangsher, and Yong Li.

Performance guaranteed partial offloading for mobile

edge computing. In IEEE Global Communications

Conference (GLOBECOM), pages 1–6, 2018.

[17] Umber Saleem, Yu Liu, Sobia Jangsher, Xiaoming Tao,

and Yong Li. Latency minimization for d2d-enabled

partial computation offloading in mobile edge

computing. IEEE Transactions on Vehicular

Technology, 69(4):4472–4486, 2020.

[18] Armando Fox, Rean Griffith, Anthony Joseph, Randy

Katz, Andrew Konwinski, Gunho Lee, David Patterson,

Ariel Rabkin, Ion Stoica, et al. Above the clouds: A

berkeley view of cloud computing. Dept. Electrical

Eng. and Comput. Sciences, University of California,

Berkeley, Rep. UCB/EECS, 28(13):2009, 2009.

[19] Bao Trinh, Liam Murphy, and Gabriel-Miro Muntean.

An energyefficient congestion control scheme for

mptcp in wireless multimedia sensor networks. In IEEE

International Symposium on Personal, Indoor and

Mobile Radio Communications (PIMRC), pages 1–7.

IEEE, 2019.

[20] Pavel Mach and Zdenek Becvar. Mobile edge

computing: A survey on architecture and computation

offloading. IEEE Communications Surveys &

Tutorials, 19(3):1628–1656, 2017.

[21] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and

Bharat Bhargava. A survey of computation offloading

for mobile systems. Mobile networks and Applications,

18(1):129–140, 2013.

[22] Weiwen Zhang, Yonggang Wen, Kyle Guan, Dan

Kilper, Haiyun Luo, and Dapeng Oliver Wu. Energy-

optimal mobile cloud computing under stochastic

wireless channel. IEEE Transactions on Wireless

Communications, 12(9):4569–4581, 2013.

[23] Yuvraj Sahni, Jiannong Cao, Lei Yang, and Yusheng Ji.

Multi-hop multitask partial computation offloading in

collaborative edge computing. IEEE Transactions on

 ISSN 2277-2685

 IJESR/April-June. 2025/ Vol-15/Issue-2s/990-998

Akkaloori Yamini et. al., / International Journal of Engineering & Science Research

998

Parallel and Distributed Systems, 32(5):1133– 1145,

2020.

[24] Sung-Tae Hong and Hyoil Kim. Qoe-aware

computation offloading scheduling to capture energy-

latency tradeoff in mobile clouds. In 2016 13th Annual

IEEE International Conference on Sensing,

Communication, and Networking (SECON), pages 1–9.

IEEE, 2016.

[25] Jiao Zhang, Li Zhou, Qi Tang, Edith C-H Ngai, Xiping

Hu, Haitao Zhao, and Jibo Wei. Stochastic computation

offloading and trajectory scheduling for uav-assisted

mobile edge computing. IEEE Internet of Things

Journal, 6(2):3688–3699, 2018.

EU project TRACTION.

