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ABSTRACT 

In recent years, eXtended Reality (VR) applications 

have been widely used across diverse sectors such as 

tourism, healthcare, education, and manufacturing. 

Such apps are now available on mobile devices, 

wearable devices, tablets, and similar platforms. 

Mobile devices often have limitations regarding battery 

capacity and computing power, which restricts the 

variety of supported apps and diminishes the user 

experience. An viable solution to these challenges is to 

transfer the computation to cloud servers. The 

fundamental restriction of cloud computing is the 

considerable distance between the processing server 

and the end user, which might lead to unacceptable 

latency for several mobile XR applications. To address 

these limitations, Multi-access Edge Computing (MEC) 

is proposed to deliver mobile computing, network 

control, and storage services to the network peripheries 

(such as base stations and access points) to enable the 

deployment of computation-intensive and latency-

sensitive applications on resource-constrained mobile 

devices. This study presents a Deep Reinforcement 

Learning-based offloading strategy for XR applications 

(DRLXR). The issue is articulated as an optimization 

equation for a utility function that considers both 

energy consumption and execution latency at devices, 

using the Markov Decision Process (MDP) paradigm 

for decision-making. The Deep Reinforcement 

Learning (DRL) approach is then used to train and 

ascertain the near-optimal offloading option for mobile 

XR gadgets. The proposed DRLXR system is evaluated 

in a simulated environment and compared with other 

innovative offloading techniques. The simulation 

findings demonstrate that our suggested approach 

surpasses its alternatives for overall execution delay 

and energy usage. 

Keywords— eXtended Reality, Offloading, Multi-

access Edge Computing, Deep Reinforcement 

Learning, Energy efficiency, 

Quality of Service 

 

INTRODUCTION 

eXtended Reality (XR) apps use the newest 

advancements in 5G and subsequent network 

connectivity. XR is described as the integration of 

virtual three-dimensional objects with real-world 

content, experienced via smart devices such as portable 

smartphones or head-mounted displays. XR is 

classified as Augmented Reality (AR), Mixed Reality 

(MR), or Virtual Reality (VR) based on the equilibrium 

between virtual content and reality. Nonetheless, 

irrespective of the categorization, there is a significant 

exponential growth in XR applications across several 

domains, including healthcare, tourism, education, and 

manufacturing.   

Figure 1 depicts a general XR system, with the 

following fundamental components:   

• Input sensors that gather data using different types of 

integrated or auxiliary sensors, including gyroscopes, 

location sensors, cameras, etc. Bao Trinh Nguyen and 
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Figure 1: Components of an XR system [4] 

Processing modules are tasked with handling the 

acquired data, executed either locally or by offloading 

to a cloud server, fog server, or edge server, depending 

upon the necessary computational complexity and 

available processing capacity.   

Outputs pertain to post-processing operations related to 

the display of XR material, including the streaming of 

high-definition video, the activation of actuators, and 

interaction with external devices. This phase employs 

head-mounted displays (HMDs) [6], portable displays 

[7], and/or devices such as haptic gloves and olfactory 

dispensers [8], among others.   

Notwithstanding the recent rapid advancements in 

hardware design and development, mobile devices used 

for XR applications remain resource-constrained 

relative to desktops or servers. The trade-off for 

enhanced mobility and compactness is a decrease in 

battery capacity and processing power. Conversely, the 

intricate algorithms mostly used in video content 

processing need substantial computer resources for XR 

applications. A proficient method to address the 

difficulty of facilitating immersive XR applications on 

resource-constrained mobile devices is to offload 

computations to resource-abundant devices, such as 

cloud or edge servers, over the network.  

Cloud computing has emerged as a successful 

computer paradigm. The fundamental concept is the 

centralization of computation, storage, and network 

management inside the cloud, facilitated by data 

centers, backbone networks, and cellular core networks 

[9], [10]. To perform computations in the cloud, mobile 

devices and servers must use offloading frameworks, 

such as MAUI [11] or ThinkAir [12]. Recently, the 

functionality of cloud computing is progressively 

shifting towards the network edges, nearer to consumer 

devices [13]. By using the dormant computational 

power and storage capacity located at network edges, 

enough resources are provided for XR apps to execute 

computation-intensive and latency-sensitive operations 

on user mobile devices. This notion underlies the 

Multi-Access Edge Computing (MEC) paradigm, 

whereby mobile devices may interact with and receive 

assistance from MEC servers using several wireless 

communication protocols, including LTE, 5G, WiFi, or 

their combinations. Figure 2 depicts the overarching 

architecture of a MEC system.  

In a MEC-enhanced cloud computing environment, the 

problem persists in determining which XR processing 

activities should be offloaded and to which location, in 

order to optimally balance XR application demands 

while efficiently using device, MEC, and cloud 

resources. 
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Figure 2: General architecture of a MEC-enhanced cloud computing system 

Conversely, computational, storage, and network 

resources. This is not straightforward, and several 

solutions have been offered using heuristic or 

complicated optimization methods [16].   

This study presents a Deep Reinforcement Learning-

based offloading method for XR applications 

(DRLXR) that allocates compute across the device, 

MEC, and cloud to optimize XR application 

performance and energy efficiency within specified 

network resource restrictions. This publication presents 

the following contributions:  

• A tri-layer architecture for XR systems is proposed, 

emphasizing the energy-efficient computation 

offloading to minimize overall power consumption 

while adhering to the stringent delay requirements of 

XR applications. • The issue is articulated through the 

Markov Decision Process (MDP) framework, with 

near-optimal offloading decision-making derived using 

a Deep Reinforcement Learning (DRL) technique. The 

XR applications are segmented into discrete tasks and 

modeled using Graph Theory. The suggested DRLXR 

solution is assessed utilizing the Network Simulator 

NS-3 and the Open Gym AI library, and it is compared 

with other innovative offloading methodologies.   

The remainder of this paper is structured as follows: 

Section II examines several innovative offloading 

techniques identified in the academic literature. Section 

discusses the technological underpinnings of Deep 

Reinforcement Learning (DRL).   

 

LITERATURE REVIEW 

This section examines advanced offloading strategies 

suggested in the research literature. Four primary 

categories of offloading methods are identified 

depending on their kind of offloading: i) binary 

offloading, ii) partial offloading, iii) stochastic model-

based offloading, and iv) deep learning-based 

offloading. 

.  

Reinforcement Learning-based Offloading 

Due to the scarcity of training data and the continuous 

emergence of innovative applications, supervised 

learning poses challenges for feature extraction. While 

unsupervised learning has potential for using network 

traffic attributes, achieving real-time processing 

remains a challenge [28]. Conversely, the 

reinforcement learning paradigm may be used without 

the need of a pre-existing dataset for training. Training 
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may occur via direct contact with the learning agent and 

its environment.   

[29], [30], and [31] suggested using reinforcement 

learning and/or integrating it with deep learning to 

develop varied offloading strategies for MEC-

enhanced Internet of Vehicle (IoV) systems. In [29], Li 

et al. developed an online reinforcement learning 

approach using feedback and traffic patterns to 

equilibrate traffic loads. To achieve effective traffic 

management, a combination challenge of 

communication, caching, and computation was 

examined in [30]. [31] suggested an offloading strategy 

that addressed the trade-off between energy usage and 

latency in the IoV system. The reinforcement learning-

based method was then used to design an offloading 

technique for Internet of Vehicles nodes.   

The authors of [32] examined IoT nodes powered by 

energy harvesting. The suggested approach enabled 

IoT devices to pick the edge server and offloading rate 

according on the current battery level and previously 

recorded radio transmission rate. Deep Reinforcement 

Learning was used to enhance offloading performance 

inside a very intricate state space.   

Wang et al. [33] reformulated the original combined 

computation offloading and content caching problem 

into a convex optimization problem and then resolved 

it in a distributed and efficient manner. Hao et al. [34] 

examined the offloading issue, including the 

constraints of CPU and storage capacity of mobile 

devices while minimizing long-term delay. The 

proposed method was developed using DRL, and the 

suggested approach demonstrated significant 

improvements in convergence time and latency 

reduction.   

Wang et al. [35] presented a Meta Reinforcement 

Learning-based technique (MRLCO) to optimize 

offloading decisions for User Equipment (UE). Mobile 

apps are structured as Directed Acyclic Graphs (DAG). 

The author use Meta Reinforcement Learning (MRL) 

to identify near-optimal offloading options for User 

Equipments (UEs) to minimize latency. UE 

applications are segmented into many sub-tasks. Each 

sub-task is thereafter determined to be executed locally 

or delegated to a virtual machine at the MEC server. 

MRLCO surpasses the other baseline algorithms for 

average latency. The primary drawback of MRLCO is 

the absence of considerations for UE mobility and 

energy usage.   

Despite exploring several routes, the majority of 

current works have failed to adopt a comprehensive 

strategy that addresses the intricacies of contemporary 

applications, particularly those related to XR. These 

applications consist of several little jobs, and their 

performance is collectively affected by network 

conditions and energy usage. This article addresses this 

gap. 

 

TECHNICAL BACKGROUND 

This section succinctly outlines the history pertaining 

to Markov Decision Processes (MDP) and Deep 

Reinforcement Learning (DRL), methodologies used in 

the proposed solution. 

 

Deep Reinforcement Learning 

A hybrid system that integrates the benefits of value 

function and policy search techniques, known as Actor-

Critic [38], was presented. The Actor-Critic approach 

integrates a value function with a direct representation 

of the policy, leading to the development of actor-critic 

methods, as seen in Figure 3. The actor (policy) 

acquires knowledge via feedback from the critic (value 

function). Actor-Critic approaches use the value 

function as a reference for policy gradients, 

distinguishing them from other baseline methods by 

their incorporation of a learned value function. Actor-

Critic approaches have many advantages: i) they need 

little computational resources for action selection 

compared to other methods; ii) they are capable of 
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learning an explicitly stochastic policy or optimum 

probability for action selection. The Actor-Critic 

technique is used as a decision-making framework for 

job offloading in XR devices due to its benefits. This 

will be further upon in the subsequent section. 

 

Figure 3: The Actor-Critic paradigm [38]. The actor 

(policy) selects an action based on the state received 

from the environment. Simultaneously, the critic (value 

function) obtains the state and reward from the previous 

encounter. The critic uses the estimated TD mistake to 

update both itself and the actor. 

 

 

Figure 4: Testing Topology 

PROBLEM STATEMENT 

This section addresses the planned offloading 

mechanism. The system architecture is first delineated, 

followed by an exposition of the issue formulation 

grounded on Markov Decision Processes (MDP). The 

DLR-based offloading mechanism is thoroughly 

introduced. All acronyms used in this study are shown 

in Table I.   

To assess and compare our suggested methods with 

other algorithms, we use the following metrics:  

• Mean energy usage (in Joules) across all devices   

• Mean total duration for job completion   

A. System Architecture   

The overarching architecture of the MEC-enhanced 

network system has three tiers: core network, edge 

network, and XR devices, as seen in Figure 5.   

The Operations Support System (OSS) and Multi-

Access Edge Orchestration (MEO) are positioned at the 

apex of the core network hierarchy. The OSS block is 

tasked with receiving client requests, assessing their 

approval, and forwarding them to MEO. The MEO 

oversees the MEC-based system, being aware of the 

available resources, services, and installed MEC hosts, 

while also monitoring the topology. MEO also 

identifies optimal hosts for application deployment, 

taking into account resource availability, service 
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accessibility, and restrictions like as latency.  

The primary components at the Edge Network level are 

the MEC Server and the MEC Platform. The latter 

oversees the life cycle management of both 

applications and MEC platforms, notifying the MEO of 

any pertinent events. The MEC platform manager 

facilitates platform configuration and application 

lifecycle management operations.  

Ultimately, at the base are XR devices executing 

computation-intensive applications, such as deep 

learning-based object identification and 360° video 

streaming, which need the offloading of some activities 

to MEC servers.  

The following discussion pertains to the block diagram 

of the MEC server and XR devices,.  

• On mobile XR devices, the Application Monitor block 

oversees the simultaneous operation of all apps. An 

energy consumption monitor block indicates the 

residual battery level and the pace of depletion. The 

Channel State Information (CSI) module continuously 

monitors the signal strength, quantified by the Received 

Signal Strength Indicator (RSSI). All three blocks 

provide information to the Local Trainer for data 

collection and to the Deep RL-based choice Maker for 

determining the offloading choice. The calculation is 

either directed to the Offloading Scheduler module and 

then sent over the Radio Transmission Unit to the MEC 

server, or it is performed locally at the Local Executor 

block.   

At the MEC server, the Data Aggregation component 

gathers all requests from devices connected to the 

Radio Transmission Unit in the neighborhood and then 

transmits them to the Traffic Management block. The 

Traffic Management block oversees all Virtual 

Machines (VM) and allocated resources for the 

respective demands of mobile devices. All queries are 

then processed, and the responses are sent back to XR 

devices using the Remote Execution Service block. The 

MEC server is also connected to Remote Cloud servers; 

however, this article disregards the impact of such 

exchanges. 

  

 

Figure 5: System Architecture of a MEC-based Network System 
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Figure 6: Block diagram of the proposed solution 

 

CONCLUSIONS AND FUTURE WORKS 

This study presents and formulates the Deep 

Reinforcement Learning-based Offloading method for 

XR devices (DRLXR) inside a MEC-enabled network 

context. A three-tier hierarchical network design is 

proposed. The workload offloading issue at the XR 

device is articulated by Deep Reinforcement Learning 

(DRL). The XR devices use an Actor-Critic technique 

for training and decision-making about task offloading, 

informed by observed data on radio signal quality, 

energy consumption, and the state of running 

applications. The suggested DRLXR system is assessed 

in a simulated setting and juxtaposed with other 

offloading techniques. The simulation findings 

demonstrate that DRLXR surpasses other options for 

average energy usage and overall completion time.  

Future endeavors will concentrate on a unified system 

that integrates the proposed offloading strategy with 

resource management at the MEC server, 

accommodating diverse QoS needs. 
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