
 ISSN 2277-2685 

IJESR/April-June. 2025/ Vol-15/Issue-2s/78-85 

Akshaya Mulinti et. al., / International Journal of Engineering & Science Research 

 

78 
 

Dynamic Security Analysis On Android 
1Dr. R. Dinesh Kumar, 2Akshaya Mulinti, 3Niveditha Bitla 

1Associate Professor, Department of CSE, Bhoj Reddy Engineering College for Women, India 

2,3B. Tech Students, Department of CSE, Bhoj Reddy Engineering College for Women, India 

 

ABSTRACT 

Dynamic analysis is a method used to 

comprehensively comprehend the internal workings 

of a system during execution. Dynamic security 

analysis on Android entails real-time evaluation and 

proactive modification of an application's behavior, 

used for diverse functions such as network 

surveillance, system call tracking, and taint analysis. 

Recent years have seen substantial advancements in 

the field of dynamic analytic research. Nonetheless, 

to our knowledge, there is a deficiency of secondary 

studies that examine the innovative concepts and 

prevalent limits in contemporary security research. 

The primary objective of this study is to comprehend 

dynamic security analysis research pertaining to 

Android, to delineate the current level of knowledge, 

identify research deficiencies, and provide insights 

into the available literature in an organized and 

methodical manner. We provide a thorough 

literature study on dynamic security analysis 

pertaining to Android. The systematic review 

formulates a taxonomy, delineates a categorization 

framework, and examines the influence of 

sophisticated Android app testing tools on security 

solutions within software engineering and security 

research. The study's principal results focus on tool 

use, research aims, limitations, and trends. 

Instrumentation and network monitoring 

technologies are essential, with research objectives 

centered on application security, privacy, malware 

detection, and the automation of software testing. 

Recognized limits include code coverage 

restrictions, challenges in security analysis, 

suitability of application selection, and non-

deterministic behavior. 

 

1. INTRODUCTION 

Dynamic analysis is a technique that is used to fully 

understand the internals of a system at runtime. On 

Android, dynamic security analysis involves real-

time assessment and active adaptation of an app’s 

behaviour, and is used for various tasks, including 

network monitoring, system-call tracing, and taint 

analysis. The research on dynamic analysis has 

made significant progress in the past years. 

However, to the best of our knowledge, there is a 

lack in secondary studies that analyse the novel ideas 

and common limitations of current security research. 

The main aim of this work is to understand dynamic 

security analysis research on Android to pre- sent the 

current state of knowledge, highlight research gaps, 

and provide insights into the existing body of work 

in a structured and systematic manner. We conduct a 

systematic literature review (SLR) on dynamic 

security analysis for Android. 

The systematic review establishes a taxonomy, 

defines a classification scheme, and explores the 

impact of advanced Android app testing tools on 

security solutions in software engineering and 

security research. The study’s key findings centre on 

tool usage, research objectives, con- straints, and 

trends. Instrumentation and network monitoring 

tools play a crucial role, with research goals focused 

on app security, privacy, malware detection, and 

software testing auto- mation. Identified limitations 

include code coverage constraints, security-related 

analysis ob- stacles, app selection adequacy, and 



 ISSN 2277-2685 

IJESR/April-June. 2025/ Vol-15/Issue-2s/78-85 

Akshaya Mulinti et. al., / International Journal of Engineering & Science Research 

 

79 
 

non-deterministic behaviour. 

 

2-BACKGROUND ON TESTING ANDROID 

APPS 

It is only logical that automated Android app testing 

plays a crucial role in most dynamic security 

analysis approaches as it is one of the fundamental 

building blocks for collecting data points. To fully 

grasp the capabilities of an Android app, it is 

necessary to interact with the app’s Graphical User 

Interface (GUI) as well as with the APIs offered by 

the Android framework. 

 

 

 

Android apps can include native code via the Java 

Native Interface (JNI) or JavaScript code via the 

webview interface Apps can directly communicate 

with companion apps to exchange data or interact 

with system services via Inter-Component-

Communication (ICC) and it is as well possible for 

apps to use JNI to interact with native system 

services. 

Android apps make use of a wide variety of 

interfaces and can share data via services, content 

providers, or broadcast listeners. Android app with 

possible communication partners to give an 

overview of frequently used interface. Apps can 

directly communicate with companion apps to 

exchange data or interact with system services via 

Inter-Component-Communication (ICC) and it is as 

well possible for apps to use JNI to interact with 

native system services. 

The usage of these interfaces in combination with 

ICC often makes an in-depth analysis of Android 

apps challenging because these dependent 

components need to be analysed in addition to the 

app under test. 

TESTING QUALITY METRICS 

To evaluate and compare the performance of 

Android testing tools, two quality metrics have been 

primarily used in the past 

Code coverage : It is the primarily used metric to 

measure which parts of the code have been executed 

during testing. In addition to line coverage 

sometimes the class, activity, or method coverage 

are measured as well. 

Fault detection : It is the other main metric applied 

when comparing testing tools. It is used to determine 

if a tool is capable of generating an input so that the 

Application under test (AUT) would crash or enter 

an unwanted state. 

STATE-OF-THE-ART ANDROID APP TESTING 

TOOLS 

Many dynamic analysis methods heavily rely on a 



 ISSN 2277-2685 

IJESR/April-June. 2025/ Vol-15/Issue-2s/78-85 

Akshaya Mulinti et. al., / International Journal of Engineering & Science Research 

 

80 
 

number of testing tools from industry and academia. 

These tools are often the basis for security 

researchers to test certain states of an application. 

Thus, we give a brief overview of common Android 

app testing tools and their limitations. The tools 

were chosen after a thorough review of publications 

on Android app testing, but the list is not 

comprehensive. 

 

 

3-DYNAMIC SECURITY ANALYSIS TECHNIQUES 

 

 

 

Fuzzing : 

Fuzzing, or fuzz testing, is an automated software 

testing technique used in cybersecurity to discover 

vulnerabilities, bugs, and other issues in software 

systems. By feeding unexpected, malformed, or 

random data as input to a program, fuzzing aims to 

cause unexpected behavior, crashes, or security 

breaches, highlighting potential weaknesses that 

could be exploited by attackers . How Fuzzing 

Works 

1. Input Generation: A fuzzing tool generates a wide 

range of test cases, which could include random 

strings, boundary values, or specially crafted 

payloads designed to exploit specific vulnerabilities. 

2. Input Delivery: These inputs are fed into the target 

program, component, or interface (e.g., APIs, web 

services, file parsers). 

3. Observation: The program’s behaviour is 

monitored for anomalies, such as crashes, memory 

corruption, or unexpected outputs. Logging and 

debugging tools are often used to capture these 

events for analysis. 

LOG-BASED ANALYSIS 

Most applications and services log errors, warnings 

and informational events to a log facility. What 

exactly is logged is not standardised; however, it is 



 ISSN 2277-2685 

IJESR/April-June. 2025/ Vol-15/Issue-2s/78-85 

Akshaya Mulinti et. al., / International Journal of Engineering & Science Research 

 

81 
 

often information that helps diagnose and reproduce 

erroneous behaviour of an application or 

information that is needed for audit purposes, e.g. 

requests for access to protected resources. By default 

the access to app logs on Android is only granted to 

privilege processes and app logs should only be 

accessible when an app is in debug mode. 

 

4-LITERATURE REVIEW METHODOLOGY 

Step 1 : we defined the following exclusion and 

selection criteria to limit our study to peer- reviewed 

publications: 

Language: Papers must be written in English. 

Time: Only publications published between 2017 to 

2023 

Type of publication: Only peer-reviewed 

publications that were published in computer science 

conferences or journals. No patents, books, or demo 

publications. 

Topic: Publications pertinent to our subject matter, 

which revolves around Android dynamic security 

analysis. In this context, “relevance” denotes the 

degree to which publications align with the specific 

focus of our study. Therefore, we will only include 

publications that directly contribute to or address 

aspects relevant to Android dynamic security 

analysis. 

Step 2 : To identify publications pertinent to our 

topic, we conducted iterative test searches on 

Google Scholar. Through multiple iterations, we 

identified search terms that consistently produced 

relevant outcomes, as evidenced by the relevance of 

the first 100 search results. 

Step 3 : We conducted keyword searches on Google 

Scholar and exported the results to machine-

readable files. For this purpose we use the tool 

Publish or Perish . Previous studies have 

demonstrated that the usage of Google Scholar is 

sufficient to find relevant publications from top 

computer science conferences and journals. In 

addition, using Google Scholar prevents a bias 

towards a specific publisher and identifies 

publications based on a scoring system. 

Step 4 : We apply our selection criteria to filter out 

irrelevant publications by year, language, and article 

form (only peer reviewed articles, no books, etc.) to 

reduce the number of search results. Following the 

application of filter criteria, we reviewed the top 

1,000 search results, scanning for potentially 

relevant publications based on their titles and 

abstracts. This selection of the initial 1,000 results 

aimed to balance comprehensiveness with 

relevance, taking into account the practical 

consideration of managing a sizeable dataset for 

thorough analysis. Additionally, this number was 

chosen to ensure a broad exploration of the literature 

landscape while maintaining feasibility in terms of 

manual screening efforts. As a result, we identified 

177 potential publications. 

Step 5 : We review the methodology and results 

section of the potential publications to identify 

articles on Android dynamic security analysis. In 

case, we find a fitting article, we conduct an in-depth 

review and add it to the SLR. 

Step 6 : The authors delve into the scope, quality, 

and relevance of the publications. This is done to 

prevent any potential bias from a single author’s 

perspective. If a situation arises where most of the 

authors identify an inconsistency in relation to a 

particular publication, a decision is reached 

regarding its inclusion or exclusion. This 

determination is based on a majority vote among the 

authors. 

 

5-TAXONOMY OF ANDROID SECURITY 

RESEARCH 

By analysing the publications in our dataset, three 

primarynresearch domains can be identified in the 



 ISSN 2277-2685 

IJESR/April-June. 2025/ Vol-15/Issue-2s/78-85 

Akshaya Mulinti et. al., / International Journal of Engineering & Science Research 

 

82 
 

realm of dynamic security analysis of Android 

Apps: (i) App Security, Privacy and Compliance, (ii) 

Malware, and (iii) OS & Framework. We use these 

three domains to group research publications with 

similar use cases and objectives. 

It shows the three main research domains and their 

connections to related security topics. It should be 

noted that many studies have overlapping use cases 

or objectives and may fit into more than one 

category. However, we assigned publications to the 

most fitting category based on their main use-case or 

objective. 

 App security, privacy and compliance (ASPC) 

encompasses publications that are primarily 

centred around the development of innovative 

techniques for conducting security testing on 

Android applications. Furthermore, it includes 

publications that explore specific categories of 

Android apps, such as, for instance, in-depth 

analyses of vulnerabilities in mobile banking apps. 

 Malware includes publications on methods for 

detecting fraudulent or malicious applications and 

how to extract or collect features from apps for 

classification tasks that can be used for detection 

techniques. 

 OS & Framework (OSF) is mainly about 

publications that study the Android framework and 

its components from a security perspective. This 

also includes research about the security of the 

Android operating system. 

The data source used by the publications, dynamic 

analysis techniques, tools used, and other factors 

are not explicitly discussed in the text but are 

recorded in the tables for the respective subsection. 

At the end of each section, we summarise the main 

takeaways and discuss the most important 

limitations. 

Android security research can be categorized into 

key domains, each addressing different aspects of 

securing the platform: 

 Application Security: Focuses on detecting 

vulnerabilities in Android apps, including malware 

analysis, code obfuscation, and secure coding 

practices. 

 Platform Security: Examines the Android OS, 

including kernel security, permission models, and 

system updates. 

 

6-APP SECURITY, PRIVACY AND 

COMPLIANCE RESEARCH 

The App Security, Privacy and Compliance domain. 

We analysed these publications in terms of the used 

dynamic analysis technique, testing methodology, 

data sources, as well as number of tested apps. 

NETWORK ANALYSIS 

There have been several methods described to test 

the used network protocols and to identify 

implementation errors in common security 

mechanisms such as TLS. In this section we discuss 

studies with a strong focus on network analysis and 

summarise their objectives and findings. 

There have been several methods described to test 

the used network protocols and to identify 

implementation errors in common security 

mechanisms such as TLS. 

 App Security: Identifies vulnerabilities such as 

insecure APIs, improper data storage, and weak 

encryption, ensuring robust defenses against 

threats. 

 Privacy Protection: Examines practices to 

safeguard user information, including 

permissions management, data anonymization, 

and preventing unauthorized data sharing. 

 Compliance: Ensures apps meet legal and 

industry regulations like GDPR, HIPAA, and 

CCPA, addressing requirements for data 

collection, storage, and user consent. 

OPEN PORTS 



 ISSN 2277-2685 

IJESR/April-June. 2025/ Vol-15/Issue-2s/78-85 

Akshaya Mulinti et. al., / International Journal of Engineering & Science Research 

 

83 
 

Wu et al. conducted an in-depth study of open ports 

on Android. 3,293 users in 136 countries worldwide 

contributed to their research by allowing the 

researchers to continuously monitor open ports on 

their smartphones. By installing an Android network 

monitoring app the researchers were able to detect 

and analyse open ports for vulnerabilities and 

identified five vulnerable patterns for open ports. 

Consequently, the researchers found vulnerabilities 

in several popular Android apps (e.g., Instagram, 

Samsung Gear, Skype) due to open ports. Moreover, 

Wu et al. found out that many of the open ports are 

solely from SDKs integrated into these apps, which 

raises the concern that the app developers are 

unaware of these open ports. 

 

7-MALWARE RESEARCH 

One of the main use cases for static and dynamic 

analysis is the examination and detection of 

fraudulent apps (mainly referred to as malware). The 

definition of what is considered to be malware is 

often blur. Solely analysing the capabilities of a 

program is not sufficient to determine if an 

application is considered malicious or not. As 

malware has many facets and uses similar or even 

the same capabilities as genuine programs, it is often 

hard to categorising malware. Consequently, 

different classification definitions for malware exist. 

These standards have their own definitions on how 

to categorise and identify malware a specific 

malware type we refer mainly to the definitions by 

the Google Play Protect schema for Potentially 

Harmful Applications (PHAs). 

 

TRACE-BASED DETECTION 

Malware detection based on system call logs is a 

form of behavioural model analysis. The key idea 

behind such detection mechanisms is that malicious 

behaviour is represented by a sequence of system 

calls. It is based on the assumption that genuine and 

malicious apps have distinguishable system call 

sequences. Identifying the potential malicious 



 ISSN 2277-2685 

IJESR/April-June. 2025/ Vol-15/Issue-2s/78-85 

Akshaya Mulinti et. al., / International Journal of Engineering & Science Research 

 

84 
 

sequences is subject to research and many 

classification systems and models have been 

proposed. 

 

8-ANDROID OS AND FRAMEWORK 

RESEARCH 

Analysis techniques that focus on examining the 

Android OS and parts of the framework for security 

purposes with dynamic analysis techniques. 

 

 

FUZZING OS AND FRAMEWORK 

COMPONENTS 

Analysing the framework’s permission is a 

challenging task as there are several hurdles to 

overcome. 

 Permissions frequently change from one Android 

version to another, making it elaborate to keep track 

of new permissions as there exists over 600 

permissions by default. 

 The framework itself is a large code base which 

makes it challenging to map the guarded functions to 

the specific permissions and to verify that the 

guarded function cannot be reached without having 

the correct permissions at runtime. 

 Smartphone vendors customise the Android 

framework and integrate custom permissions into 

the framework which makes it challenging to have 

generic tooling. 

Generating tests to detect permission re-delegation 

vulnerabilities is challenging as the Android 

framework is too large to be instrumented with 

standard tools. Therefore, several researchers have 

proposed solutions for test generation and fuzzing. 

9-CONCLUSION 

In this systematic literature review (SLR), we 

conducted a thorough exploration of dynamic 

analysis in Android security research, illuminating 

significant trends and key aspects within the field. 

We give an overview of the applied analysis 

techniques in the field and show which techniques 

are frequently combined. By meticulously 

examining 43 carefully selected publications from 

diverse venues, we identified and analysed 

innovative methodologies, tools, and ideas related to 

dynamic analysis for security purposes. The 

development of a taxonomy yielded three primary 

research domains, providing a structured framework 

for comprehending the dynamic analysis landscape 

in Android security. 

 

REFERENCES 

1. Proton AG. (2023). Complete Guide to GDPR 



 ISSN 2277-2685 

IJESR/April-June. 2025/ Vol-15/Issue-2s/78-85 

Akshaya Mulinti et. al., / International Journal of Engineering & Science Research 

 

85 
 

Compliance. MISC. Accessed: Apr. 26, 2023. 

[Online]. Available: https://gdpr.eu/ 

2. PState of California Department of Justice. (2023). 

California Consumer Privacy Act (CCPA). MISC. 

Accessed: Apr. 26, 2023. [Online]. 

3. S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, 

J. Klein, Y. Le Traon, D. Octeau, and P. McDaniel, 

‘‘FlowDroid: Precise context, flow, field, object-

sensitive and lifecycle-aware taint analysis for 

Android apps,’’ ACM SIGPLAN Notices, vol. 49, 

no. 6, pp. 259–269, 2014. 

4. L. Wartschinski, Y. Noller, T. Vogel, T. Kehrer, and 

L. Grunske, ‘‘VUDENC: Vulnerability detection 

with deep learning on a natural codebase for 

Python,’’ Inf. Softw. Technol., vol. 144, Apr. 2022, 

Art. no. 106809. 

5. A. Lyons, J. Gamba, A. Shawaga, J. Reardon, J. 

Tapiador, S. Egelman, and N. Vallina- Rodriguez, 

‘‘Log: It’s big, it’s heavy, it’s filled with personal 

data! Measuring the logging of sensitive information 

in the Android ecosystem,’’ in Proc. Usenix Secur. 

Symp., 2023, pp. 2115–2132. 

 


