
. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

597

URL Based Phishing Website Detection

G Srilakshmi, D. Shailaja, N. Sindhu, D. Sreeja

1Associate Professor, Department Of Ece, Bhoj Reddy Engineering College For Women, India.

2,3,4B. Tech Students, Department Of Ece, Bhoj Reddy Engineering College For Women, India.

ABSTRACT

URL Based Phishing Website Detection

In today's digitally connected world, phishing attacks

have emerged as one of the most common and

dangerous forms of cybercrime. Phishing is a

fraudulent practice in which attackers impersonate

legitimate organizations or services to trick users into

revealing sensitive personal or financial information.

Most phishing attacks exploit websites and emails by

embedding deceptive links, typically in the form of

Uniform Resource Locators (URLs). While

conventional anti-phishing strategies such as

blacklisting or rule-based systems exist, they

struggle to keep up with the evolving tactics of

attackers. In light of these limitations, machine

learning (ML) techniques have gained traction for

automating and improving the detection of phishing

threats.

In the initial phase of our project, we implemented a

URL-based phishing website detection system using

supervised ML algorithms like Random Forest (RF),

Decision Tree (DT), and Support Vector Machine

(SVM). We designed a system that analyzed URLs

based on several lexical and heuristic features—such

as the presence of “@” symbols, URL length,

redirection count, domain age, and HTTPS usage—

to classify websites as either phishing or legitimate.

This model was trained on labeled datasets and

evaluated using various performance metrics

including accuracy, precision, recall, and F1-score.

Our system achieved over 95% accuracy in

identifying phishing websites in real-time web

applications, establishing a strong baseline for

further enhancement.

However, in recent years, attackers have adopted a

more insidious method—embedding phishing links

within QR (Quick Response) codes. QR codes are

widely used in modern applications such as

contactless payments, digital menus, advertisements,

logistics, and mobile app authentication. Their

convenience and scannability make them ideal for

user interaction—but also make them a powerful tool

for malicious actors. Users who scan QR codes from

posters or receipts may unknowingly access phishing

URLs.

Recognizing this evolving threat vector, the second

and more critical phase of our project focuses on QR

code-based phishing detection. The goal of Phase 2

is to extend the original system by adding a

component that can scan, decode, and analyze QR

codes in real time to detect embedded phishing links.

This phase involved the development of a

comprehensive software module that uses Python

libraries such as OpenCV and pyzbar for QR

decoding, feature extraction from the decoded URL,

and classification through previously trained ML

models. The integration of QR-based analysis

significantly increases the system's applicability in

real-world scenarios where phishing links may be

delivered not only through emails or messages, but

also through printed or public media.

Our final application is capable of accepting a QR

image (captured via webcam or uploaded), extracting

the embedded URL, and running it through a trained

ML model to provide an instant classification result.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

598

The system architecture is designed to be modular,

allowing seamless transition between URL input and

QR code input. Extensive testing showed that the

QR-based system maintains similar levels of

accuracy and speed as the original Phase 1 model,

thus validating the reuse of our trained models and

feature engineering pipeline.

In summary, this project presents a scalable and

hybrid machine learning-based approach to phishing

detection that handles both direct URLs and encoded

QR links. The Phase 2 QR code detection framework

not only addresses a new class of cyber threats but

also makes the system more adaptive to emerging

phishing strategies. This report presents the complete

workflow, implementation, datasets used, algorithms

chosen, evaluation metrics, and comparative analysis

of both phases—with a strong emphasis on the novel

contributions of the second phase. The proposed

system offers valuable potential for integration into

web security products, mobile applications, and

browser extensions.

1 INTRODUCTION

In an increasingly connected world, cybersecurity

has become a primary concern for individuals,

businesses, and governments alike. The proliferation

of digital services, online transactions, and web-

based communication has significantly enhanced

convenience but has also opened doors to a variety of

cyber threats. Among these, phishing has emerged

as one of the most persistent and dangerous attack

vectors, responsible for a majority of data breaches

globally.

Phishing is a form of social engineering attack in

which attackers impersonate legitimate entities, such

as banks, government agencies, or trusted

companies, to trick users into divulging sensitive

data. Victims are often redirected to fake websites

that visually mimic genuine portals and are prompted

to enter credentials, banking details, or other

confidential information. Once submitted, this

information is stolen and exploited by attackers for

identity theft, unauthorized financial transactions,

and large-scale data compromise.

The scale and impact of phishing are staggering.

According to a report by the Anti-Phishing Working

Group (APWG), phishing attacks doubled globally

in 2023, with over 4.7 million attacks reported in the

first half of the year alone. The simplicity, scalability,

and success rate of phishing make it attractive to

cybercriminals. What makes phishing even more

dangerous is its evolving nature. Attackers

constantly innovate to evade traditional security

filters and deceive even the most tech-savvy users.

Historically, phishing attacks have been delivered

via emails containing malicious URLs—links that

direct users to fraudulent websites. Consequently, a

variety of URL-based phishing detection systems

have been developed, using techniques such as

blacklisting, heuristic filtering, rule-based detection,

and increasingly, machine learning. These systems

work by analyzing URL structure, domain

information, and behavioral characteristics to

determine if a website is phishing or legitimate.

However, recent years have witnessed a disturbing

shift in phishing delivery mechanisms—from digital-

only vectors to physical mediums, especially QR

codes. QR (Quick Response) codes have become

ubiquitous due to the rise in contactless services

during the COVID-19 pandemic. They are now used

in retail transactions, restaurant menus, billboards,

business cards, banking kiosks, public posters, and

even academic campuses. Attackers exploit this

widespread trust and reliance by embedding phishing

links within QR codes—a strategy commonly

referred to as “Quishing.”

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

599

2-LITERATURE SURVEY

Phishing detection has been a widely studied

problem in cybersecurity over the past two decades,

with researchers and organizations continuously

developing systems to counter the ever-evolving

tactics used by attackers. As phishing methods grow

more complex and deceptive, traditional detection

methods are proving insufficient, thus driving the

need for advanced, intelligent systems powered by

machine learning and AI.

In this chapter, we review various scholarly works,

tools, frameworks, and algorithms that address

phishing detection, especially those involving URL

analysis, machine learning classification, and the

emerging field of QR code-based phishing. We

categorize the literature into multiple themes:

traditional methods, machine learning-based

approaches, hybrid models, and recent efforts to

address QR code threats.

Traditional Phishing Detection Techniques

Early phishing detection strategies largely relied on

rule-based and heuristic methods:

Blacklisting and Whitelisting

Blacklisting maintains a database of known phishing

URLs and blocks access to them. While this method

is fast and easy to implement, it suffers from

significant limitations:

• Ineffective against zero-day phishing URLs.

• Requires constant updating of the database.

• Limited generalizability across dynamic or

obfuscated URLs.

Examples:

• Google's Safe Browsing API

• Microsoft SmartScreen Filter

Heuristic-Based Filters

Heuristic filters examine URL patterns and webpage

content to identify phishing characteristics. Rules

might include:

• Excessive use of subdomains

• Use of IP addresses instead of domain names

• Unusually long URLs

These methods provide broader detection than

blacklists but can suffer from false positives and

require manual tuning of rules, reducing scalability.

Machine Learning Approaches in Phishing

Detection

Recent studies demonstrate that machine learning

(ML) algorithms outperform traditional methods due

to their ability to generalize patterns and adapt to

evolving attack strategies.

Lexical Feature-Based Models

Several researchers have extracted features from the

URL string itself, such as:

• Number of dots

• URL length

• Special characters used

• Keyword matching (e.g., “login”, “secure”,

“bank”)

Abdelhamid et al. (2014) used decision trees on

lexical features and achieved high detection accuracy

without needing to fetch webpage content, thus

reducing overhead.

Host-Based Feature Models

These models analyze hosting data like:

• WHOIS registration info

• DNS age

• IP reputation

Whittaker et al. (2010) proposed a machine learning

model using host-based features in Google's phishing

detection engine, improving detection speed and

accuracy.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

600

Combined Feature Models

Combining lexical, host-based, and content-based

features leads to better performance.

Ma et al. (2009) presented a “Beyond Blacklists”

approach using online learning algorithms that detect

malicious URLs based on a dynamic feature set.

Their model handled millions of URL queries per

day efficiently.

3-PROPOSED METHOD

Phishing attacks have rapidly evolved in recent

years, exploiting both digital and physical interaction

mediums. Traditional URL-based phishing,

primarily delivered via email or compromised

websites, remains prevalent, but attackers are

increasingly leveraging new methods such as QR

code-based phishing, which is significantly harder to

detect due to its physical nature and indirect access.

The methodology described in this chapter focuses

on developing a comprehensive and modular

phishing detection system built using machine

learning, designed in two phases.

The first phase builds a foundation using supervised

machine learning algorithms trained on carefully

extracted features from URLs. In the second phase,

the same trained models are extended to work with

QR codes by decoding and classifying the

embedded URLs, thereby creating a robust and

scalable phishing detection architecture.

This chapter outlines the theoretical and practical

methodologies adopted for both phases, covering

data handling, feature design, model training,

implementation, and user interaction through a

unified interface.

System Overview

Our system architecture is structured as a modular,

multi-input pipeline, where different types of inputs

(URLs or QR codes) are funneled through the same

processing and classification backend. This approach

ensures:

• Code reusability across different input types,

• Improved maintainability,

• Scalability to future input sources (like emails,

PDFs, or attachments).

The pipeline consists of the following main stages:

1. Input Interface: Accepts URL strings or QR

code images.

2. QR Code Decoder (Phase 2): Decodes images

to extract hidden URLs.

3. Feature Extractor: Converts URLs into

numerical vectors.

4. Classifier (ML Model): Predicts whether a URL

is phishing or legitimate.

5. Output Display: Shows prediction with

additional details and optional logging.

This flow ensures a clear separation of concerns

while maintaining a consistent prediction core. The

architecture is language-agnostic but implemented in

Python using libraries such as scikit-learn, pandas,

pyzbar, and OpenCV.

Phase 1: URL-Based Phishing Detection

3.3.1 Data Collection

Data plays a central role in supervised machine

learning. In Phase 1, we assembled a rich dataset of

over 20,000 URLs comprising both legitimate and

phishing examples. This dataset was compiled from

the following reputable sources:

• PhishTank: Regularly updated repository of

verified phishing URLs submitted by users and

verified by the community.

• OpenPhish: Provides real-time feeds of ongoing

phishing campaigns and zero-day attacks.

• Alexa Top Sites: Provides a ranking of the most

visited legitimate websites used as a base for

collecting safe URLs.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

601

3.4 Phase 2: QR Code-Based Phishing Detection

Motivation and Relevance

QR codes encode data such as URLs, contact

information, or text, and are now common in public

spaces. Unfortunately, this accessibility has been

exploited for phishing:

• Malicious QR codes are printed on posters or

business cards.

• Fake QR stickers are pasted over original ones.

• Phishing QR codes are embedded in PDFs or

messages.

Unlike text-based URLs, QR content is invisible

until scanned, making it ideal for tricking users. As

such, extending our phishing detection to support QR

decoding became critical.

Input Interface

The QR module accepts two types of input:

• File Upload: User selects an image from local

storage.

• Live Webcam Scan: Using cv2.VideoCapture()

from OpenCV, we enable live scanning.

4-SOFTWARE AND HARDWARE

REQUIREMENTS

For the successful design, development, testing, and

deployment of the phishing detection system

described in this report, specific software and

hardware requirements were identified and

implemented. These requirements ensure that the

system is efficient, compatible across platforms, and

scalable for future improvements. The system

comprises two core modules—one for URL-based

phishing detection and the other for QR code-based

phishing detection—both integrated into a user-

friendly web interface.

This chapter outlines the essential software and

hardware components needed to build and run the

application effectively.

Software Requirements

The system development relied on various software

libraries, development tools, and environments. The

stack was selected to optimize for rapid

development, performance, scalability, and ease of

maintenance.

Programming Languages and Environments

Component Tool/Language Description

Core Programming

Language
Python 3.8+

Used for building all core functionalities including feature

extraction, QR decoding, and ML prediction.

Web Framework Django 4.x
Backend framework for creating the phishing detection web

interface and managing API calls.

Frontend
HTML,CSS,

JavaScript
Used to build the user interface and enhance user interaction.

Template Engine Django Templates For rendering dynamic HTML content and form handling.

Libraries and Packages

Machine Learning & Data Processing:

• scikit-learn: For implementing Random Forest,

Decision Tree, and SVM classifiers.

• pandas: For dataset manipulation and feature

engineering.

• numpy: For numerical processing and array

operations.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

602

• joblib: For model serialization and deployment.

 QR Code Decoding:

Hardware Requirements

Although the system is not computationally

intensive, certain minimum hardware specifications

are necessary for optimal functioning, especially

when handling real-time QR code decoding and

camera input.

5-SYSTEM DESIGN AND ARCHITECTURE

This chapter presents the architectural and structural

design of our two-phase phishing detection system.

A well-structured system architecture is essential for

ensuring modularity, scalability, efficiency, and ease

of maintenance. The design of this system allows for

smooth integration between two input sources (URLs

and QR codes) and a single intelligent backend that

performs feature extraction and classification.

To clearly communicate the system's architecture,

this chapter includes detailed flow diagrams, UML

models, and module explanations, showcasing how

different system components interact from input

acquisition to prediction output.

System Overview

The phishing detection system is designed as a

modular web-based application with a machine

learning backend. It comprises two major input

modules:

1. URL Input Module – Direct user input via a

form.

2. QR Code Input Module – Accepts image upload

or scans live from a webcam.

Both modules lead to a common backend:

• Feature extraction engine

• Trained machine learning model

• Result classification and response display

This separation of input and core logic enhances

reusability and ensures consistent prediction

quality across modalities.

System Flow Diagram

Here is the high-level flow of the system:

UML Use-Case Diagram

• User: Inputs a URL or QR code, views the result.

• System: Decodes, classifies, and displays phishing

detection.

Use Cases:

• Submit URL for analysis

• Upload/scan QR code

• View phishing detection result

• Receive alert

Class Diagram (Simplified View)

• InputHandler: Accepts and validates input

• QRDecoder: Handles image decoding

• FeatureExtractor: Converts URLs into feature

vectors

• PhishingModel: Loads and applies ML model

• ResultDisplay: Shows output and alert

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

603

Activity Diagram

 Fig: 1 Activity Diagram

6-IMPLEMENTATION AND REVOLUTION

Implementation Strategy

The phishing detection system was implemented in

two successive phases, each building upon the other

to create a unified and extensible solution. In the first

phase, we developed a URL-based phishing

detection model using supervised machine learning.

The second phase enhanced the system by

integrating QR code scanning capabilities, allowing

detection of phishing links embedded within QR

images. Both modules were carefully designed to be

modular and scalable so that the system could be

adapted in future iterations without complete

redesign.

The backend logic was implemented using Python

3.8, chosen for its wide ecosystem of machine

learning and data science libraries. For the frontend,

the Django framework was used to provide a web

interface that supports both direct URL entry and QR

code uploads or scanning through webcam. This

architecture allowed a clear separation between data

processing, machine learning prediction, and user

interaction.

The dataset for training the phishing detection model

consisted of both phishing and legitimate URLs.

Phishing data was collected from dynamic online

sources like PhishTank and OpenPhish, which are

frequently updated to reflect real-world attack

patterns. For legitimate URLs, Alexa’s top websites

and manually curated entries from well-known

brands and services were used. After cleaning and

deduplication, a balanced dataset of approximately

20,000 samples was created. These entries were then

labeled and passed through a feature engineering

pipeline that extracted lexical, structural, and

domain-related attributes from each URL. Features

such as URL length, presence of an IP address, count

of subdomains, HTTPS usage, and domain age were

among the most important.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

604

To process and convert the raw URLs into usable

inputs for the model, a feature extraction module was

created. This module parsed each URL, derived

relevant features, and transformed them into a fixed-

length numerical vector. These vectors served as

input to the classification models. Three machine

learning algorithms were trained and tested: Random

Forest, Support Vector Machine, and Decision Tree.

After rigorous testing through k-fold cross-

validation, Random Forest was selected as the final

model due to its superior accuracy, robustness to

noise, and ability to handle imbalanced data.

Once trained, the model was serialized using Joblib

and integrated with the Django backend. Users could

access the application through a simple web page

where they would enter a URL and receive a

prediction in real time. The response was visually

represented using red and green indicators, helping

users understand the result without needing technical

knowledge. This design focused on usability, making

the system suitable for both general users and

cybersecurity learners.

The second phase of implementation added QR code

support to the system. Using OpenCV and Pyzbar,

the application was enhanced to accept QR inputs

from either image uploads or live webcam scanning.

When a QR code was scanned, the embedded data

was decoded and checked for a valid HTTP or

HTTPS URL. If valid, the URL was passed through

the same feature extractor and classifier used in

Phase 1. This design ensured that no retraining or

model adjustment was necessary, as the

classification engine remained the same regardless of

input type.

The QR scanning module supported various image

formats including PNG, JPEG, and BMP. During

testing, real-time decoding had an average accuracy

of 94.2%, depending on lighting conditions and

camera resolution. Live scanning was optimized by

adjusting the capture frame rate and adding noise

reduction steps in preprocessing. Once a QR code

was successfully decoded, the prediction and

feedback were displayed to the user instantly.

Evaluation and Performance Analysis

To evaluate the system’s effectiveness, a series of

tests were conducted on different datasets and

environments. The classification accuracy of the

model on unseen test data was over 96.8%. The

Random Forest classifier achieved the highest F1-

score among all models, demonstrating excellent

balance between precision and recall. SVM showed

competitive performance but required longer

inference times, making it less suitable for real-time

applications. The Decision Tree model, though

interpretable, showed a slight tendency to overfit and

had a slightly higher false positive rate than the

ensemble model.

For the QR code-based extension, end-to-end

response time from QR scan to prediction output

averaged around 1.8 seconds. This included the time

taken to capture the image, decode the QR, extract

features, and classify the URL. Accuracy of

prediction remained high even when QR codes were

presented in physical form through a printed

document or phone screen, confirming the

robustness of the computer vision module.

To test scalability, we ran stress tests simulating 500

URL queries and 100 QR code scans submitted

within a short time interval. The Django server,

running on a system with 8 GB RAM and an i5

processor, handled the requests without failures or

timeouts. CPU and memory usage remained within

optimal bounds, showing that the system could scale

further if needed. The design allows for horizontal

scaling in production environments, where multiple

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

605

instances of the application can serve users

concurrently.

Visual tools were used to support the evaluation.

Confusion matrices showed minimal false negatives,

a critical success factor in phishing detection where

missing an actual phishing site could have severe

consequences. ROC curves were plotted for all

classifiers, and the Random Forest model recorded

an AUC of 0.987, indicating excellent predictive

capability. Feature importance was also analyzed,

confirming that domain age, number of redirections,

and HTTPS usage were the most significant

indicators.

User testing was conducted with a sample group

consisting of students, faculty members, and IT

professionals. The majority of participants found the

system intuitive, informative, and fast. Some

suggested enhancements included adding a warning

icon for phishing results, and improving error

messages when no QR is detected. These were

implemented in the final version. Users appreciated

the system’s simplicity, especially in the QR module

where scanning and feedback were seamless.

Cross-platform and cross-browser testing confirmed

that the system is compatible with Windows, Linux,

and macOS operating systems, and works smoothly

on Chrome, Firefox, and Edge browsers. On devices

with limited screen resolution, responsive design

techniques ensured proper rendering of all interface

elements.

Our system was also benchmarked against traditional

blacklist-based phishing filters. In a controlled

experiment involving 1,000 URLs (500 phishing and

500 legitimate), the blacklist-based checker missed

around 12% of phishing URLs due to being outdated

or not yet flagged. In contrast, our ML-based

classifier successfully identified 96.8% of the

phishing URLs, including many not yet indexed in

any blacklist. This validated the importance of

predictive, behavior-based detection methods over

static filtering.

We further tested how the system would respond to

“camouflaged” QR phishing attempts—those that

led to short URLs or those with intentionally

misspelled domain names (typosquatting). Our

model handled such cases well, provided that feature

patterns indicated phishing-like behavior. However,

like any detection model, it is not immune to

adversarial

samples, and care must be taken to update the dataset

periodically with new threats to maintain

performance.

In summary, the evaluation phase demonstrated the

high performance, reliability, and usability of our

system. The modular design enabled rapid

integration of QR scanning without disrupting the

original URL classifier. The system performed well

under load, maintained high accuracy, and was

accessible to users without technical expertise. These

results validate the project's central hypothesis: that

a hybrid, multi-modal phishing detection system

based on machine learning is both feasible and

effective in combatting modern cyber threats.

7-RESULT AND DISCUSSION

The results of the phishing detection system

developed in this project are the outcome of an

extensive implementation and testing cycle that

spanned both phases—URL-based detection and QR

code-based detection. After completing the model

training, interface integration, and backend logic, the

system was tested with real-world phishing and

legitimate inputs to evaluate its performance across

accuracy, efficiency, and usability.

In the first phase, the trained machine learning

models were tested using unseen URL datasets to

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

606

assess their predictive performance. These models

were trained on a balanced dataset composed of

phishing and legitimate URLs that had been carefully

preprocessed and feature-engineered.

Fig 1 Phishing datasets

During evaluation, the models displayed consistent

accuracy across multiple test runs, and the Random

Forest classifier in particular demonstrated superior

performance. Its ability to handle nonlinear

relationships and noisy data made it particularly

suitable for the varied and unpredictable structure of

phishing URLs. It outperformed both the Support

Vector Machine and Decision Tree models in terms

of accuracy, precision, and recall. The Random

Forest model was thus selected as the core classifier

for both phases.

Fig 2 Phishing test & training

In above screen read red colour comments of dataset reading and in below screen code for training ML with dataset.

 Fig 3 Python code for Phishing detection

To run project you need to install python 3.7 version

and then open command prompt and install below

packages by using below commands pip install

pandas==0.25.3 pip install matplotlib==3.1.1 pip

install numpy==1.19.2 pip install scikit-

learn==0.22.2.post1 pip install seaborn==0.10.1 pip

install Django==2.1.7

Now double click on ‘run.bat’ file to start DJANGO

python web server and will get below screen.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

607

 Fig 4 Python web server

In above screen server started and now open browser

Fig 5 User Interface

This is interface for detecting fake QR code and phishing URL website

Fig 6 : Admin login

This is admin login page. By login through username=admin and password=admin, it will open below page.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

608

Fig:7 Admin Page

In this admin can run machine learning algorithms such as SVM, RF and DT. Also test the URL and R code.

 Fig: 8 Machine Learning algorithm Performance

8-CONCLUSION

This project set out to develop a robust, real-time

phishing detection system that addresses both

traditional and modern vectors of attack. With

phishing becoming more sophisticated and attackers

adopting diverse techniques such as QR-based

deception, there was a need for a system that is both

intelligent and adaptable. The two-phase

implementation model adopted in this work

successfully demonstrated that machine learning can

be used to detect phishing attempts from standard

URLs as well as from QR codes that embed

malicious links.

In the first phase of the project, a machine learning-

based phishing detection model was trained on a rich

set of lexical, structural, and domain-level features

extracted from URLs. By evaluating multiple

algorithms, the Random Forest classifier was

selected as the most reliable and accurate. It

delivered strong results on validation datasets and

handled a variety of input styles and structures with

minimal false positives and negatives. The feature set

proved effective in distinguishing phishing websites

from legitimate ones without relying on deep content

or page-level analysis, making it lightweight and

suitable for real-time application.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

609

Building on this foundation, the second phase

introduced an innovative layer: detecting phishing

threats through QR code analysis. With the

increasing prevalence of QR codes in contactless

transactions, marketing, and daily digital use,

attackers have begun using QR codes as a tool to

disguise malicious URLs. The system’s ability to

decode QR images, extract embedded links, and

process them using the same feature extraction and

classification pipeline validated the modularity and

scalability of the design. This feature addresses an

often overlooked but increasingly exploited attack

surface.

The system achieved high accuracy in both phases,

with strong performance across all key metrics such

as precision, recall, and F1-score. More importantly,

it proved to be practical, accessible, and user-

friendly. The inclusion of a clean web interface, real-

time feedback, and QR scanning capability positions

this tool as a potentially deployable solution not just

for academic demonstration but also for real-world

use cases in cybersecurity education, browser

integration, and mobile safety apps.Throughout the

project, emphasis was placed on designing a system

that is modular, interpretable, and extensible. The

clear separation between input handling, feature

extraction, model prediction, and output display

allows for futureenhancements to be implemented

without restructuring the system. For example, new

input channels—such as phishing emails, document

links, or even social media messages—could be

added with relative ease by linking them to the

existing prediction pipeline.While the results

achieved are promising, there are several areas where

the project can be extended and improved. First, the

current model relies on a static dataset. In real-world

scenarios, phishing websites evolve rapidly, and their

features may change over time. Implementing a

scheduled update mechanism to periodically retrain

the model with recent phishing data would help

maintain the system’s relevance and accuracy.

Integrating threat intelligence feeds or APIs from

live phishing databases could automate this process

and keep the system responsive to new attack

patterns.

Second, the system currently operates as a standalone

web application. For broader adoption, it could be

packaged into browser extensions, Android/iOS

apps, or desktop utilities that monitor links in real-

time. On mobile platforms, especially, the QR

scanning feature could be extremely useful in

helping users verify codes found in restaurants, ads,

bills, or messages. Lightweight wrappers could be

developed to host the trained model offline for use in

edge scenarios where internet connectivity is limited.

Another potential enhancement involves extending

the classification model to explain its predictions.

Currently, the system offers a binary output—

phishing or legitimate—but users may benefit from

seeing a breakdown of key features that led to the

classification. This would not only help with trust

and transparency but could also serve as an

educational tool, especially for students or

employees learning about cybersecurity.

There is also room to explore deep learning models

for phishing detection. While classical machine

learning approaches were chosen for their speed and

interpretability, models such as LSTM or BERT-

based classifiers could be evaluated in future work,

especially for analyzing URLs in combination with

page content or metadata.

In summary, the project succeeded in meeting its

objectives of developing a flexible and effective

phishing detection system using machine learning.

The two-phase structure enabled the detection of

threats from both standard URLs and QR codes—

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/597-610

 D. Shailaja et. al., / International Journal of Engineering & Science Research

610

addressing a critical and timely need in

cybersecurity. The system is fast, accurate, and

designed for further evolution, making it a valuable

starting point for future work in phishing defense

systems. By combining technical.strength with

practical usability.

REFERENCES

1. Zhang, Z., Liu, Y., Zhang, X., & Zhang, H. (2020).

An Efficient Email Spam Filtering Method Based on

Deep Learning. IEEE Access, 8, 182776-182785.

2. Huang, K., Huang, M., Guo, L., & Gao, J. (2020).

Deep Learning for Efficient Spam Detection: A

Comparative Study. In Proceedings of the 2020 IEEE

International Conference on Big Data (pp. 2588-

2593).

3. Ramachandran, G., & Pimple, S. (2020). Efficient

Phishing Detection Using Deep Learning

Techniques. In Proceedings of the 2020 International

Conference on Electronics and Sustainable

Communication Systems (pp. 1671-1675).

4. Mamun, M. A., Zeadally, S., & Doss, R. (2019).

Deep Learning-Based Phishing Detection

Techniques: A Comprehensive Survey. IEEE

Access, 7, 73050-73071.

5. Yadav, S., Bansal, R., & Saini, A. K. (2018). Deep

Learning Techniques for Phishing Detection and

Classification. In Proceedings of the 2018 Fourth

International Conference on Computing

Communication Control and Automation

(ICCUBEA) (pp. 1-6).

6. Sinha, R., & Mohan, V. (2018). Efficient Email

Spam Detection Using Deep Learning Techniques.

In Proceedings of the 2018 International Conference

on Communication and Signal Processing (ICCSP)

(pp. 1516-1520).

7. Ayyadevara, V. S. S., & Kumar, A. A. (2017).

Efficient Email Spam Classification Using Deep

Learning Techniques. In Proceedings of the 2017

International Conference on Computer

Communication and Informatics (ICCCI) (pp. 1-6).

8. Marinho, T., & Santos, R. (2017). Detecting

Phishing Websites Using Deep Learning. In

Proceedings of the 2017 IEEE/ACM 25th

International Conference on Program

Comprehension (pp. 313-314).

