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ABSTRACT 

URL Based Phishing Website Detection 

In today's digitally connected world, phishing attacks 

have emerged as one of the most common and 

dangerous forms of cybercrime. Phishing is a 

fraudulent practice in which attackers impersonate 

legitimate organizations or services to trick users into 

revealing sensitive personal or financial information. 

Most phishing attacks exploit websites and emails by 

embedding deceptive links, typically in the form of 

Uniform Resource Locators (URLs). While 

conventional anti-phishing strategies such as 

blacklisting or rule-based systems exist, they 

struggle to keep up with the evolving tactics of 

attackers. In light of these limitations, machine 

learning (ML) techniques have gained traction for 

automating and improving the detection of phishing 

threats. 

In the initial phase of our project, we implemented a 

URL-based phishing website detection system using 

supervised ML algorithms like Random Forest (RF), 

Decision Tree (DT), and Support Vector Machine 

(SVM). We designed a system that analyzed URLs 

based on several lexical and heuristic features—such 

as the presence of “@” symbols, URL length, 

redirection count, domain age, and HTTPS usage—

to classify websites as either phishing or legitimate. 

This model was trained on labeled datasets and 

evaluated using various performance metrics 

including accuracy, precision, recall, and F1-score. 

Our system achieved over 95% accuracy in 

identifying phishing websites in real-time web 

applications, establishing a strong baseline for 

further enhancement. 

However, in recent years, attackers have adopted a 

more insidious method—embedding phishing links 

within QR (Quick Response) codes. QR codes are 

widely used in modern applications such as 

contactless payments, digital menus, advertisements, 

logistics, and mobile app authentication. Their 

convenience and scannability make them ideal for 

user interaction—but also make them a powerful tool 

for malicious actors. Users who scan QR codes from 

posters or receipts may unknowingly access phishing 

URLs. 

Recognizing this evolving threat vector, the second 

and more critical phase of our project focuses on QR 

code-based phishing detection. The goal of Phase 2 

is to extend the original system by adding a 

component that can scan, decode, and analyze QR 

codes in real time to detect embedded phishing links. 

This phase involved the development of a 

comprehensive software module that uses Python 

libraries such as OpenCV and pyzbar for QR 

decoding, feature extraction from the decoded URL, 

and classification through previously trained ML 

models. The integration of QR-based analysis 

significantly increases the system's applicability in 

real-world scenarios where phishing links may be 

delivered not only through emails or messages, but 

also through printed or public media. 

Our final application is capable of accepting a QR 

image (captured via webcam or uploaded), extracting 

the embedded URL, and running it through a trained 

ML model to provide an instant classification result. 
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The system architecture is designed to be modular, 

allowing seamless transition between URL input and 

QR code input. Extensive testing showed that the 

QR-based system maintains similar levels of 

accuracy and speed as the original Phase 1 model, 

thus validating the reuse of our trained models and 

feature engineering pipeline. 

In summary, this project presents a scalable and 

hybrid machine learning-based approach to phishing 

detection that handles both direct URLs and encoded 

QR links. The Phase 2 QR code detection framework 

not only addresses a new class of cyber threats but 

also makes the system more adaptive to emerging 

phishing strategies. This report presents the complete 

workflow, implementation, datasets used, algorithms 

chosen, evaluation metrics, and comparative analysis 

of both phases—with a strong emphasis on the novel 

contributions of the second phase. The proposed 

system offers valuable potential for integration into 

web security products, mobile applications, and 

browser extensions. 

1  INTRODUCTION 

In an increasingly connected world, cybersecurity 

has become a primary concern for individuals, 

businesses, and governments alike. The proliferation 

of digital services, online transactions, and web-

based communication has significantly enhanced 

convenience but has also opened doors to a variety of 

cyber threats. Among these, phishing has emerged 

as one of the most persistent and dangerous attack 

vectors, responsible for a majority of data breaches 

globally. 

Phishing is a form of social engineering attack in 

which attackers impersonate legitimate entities, such 

as banks, government agencies, or trusted 

companies, to trick users into divulging sensitive 

data. Victims are often redirected to fake websites 

that visually mimic genuine portals and are prompted 

to enter credentials, banking details, or other 

confidential information. Once submitted, this 

information is stolen and exploited by attackers for 

identity theft, unauthorized financial transactions, 

and large-scale data compromise. 

The scale and impact of phishing are staggering. 

According to a report by the Anti-Phishing Working 

Group (APWG), phishing attacks doubled globally 

in 2023, with over 4.7 million attacks reported in the 

first half of the year alone. The simplicity, scalability, 

and success rate of phishing make it attractive to 

cybercriminals. What makes phishing even more 

dangerous is its evolving nature. Attackers 

constantly innovate to evade traditional security 

filters and deceive even the most tech-savvy users. 

Historically, phishing attacks have been delivered 

via emails containing malicious URLs—links that 

direct users to fraudulent websites. Consequently, a 

variety of URL-based phishing detection systems 

have been developed, using techniques such as 

blacklisting, heuristic filtering, rule-based detection, 

and increasingly, machine learning. These systems 

work by analyzing URL structure, domain 

information, and behavioral characteristics to 

determine if a website is phishing or legitimate. 

However, recent years have witnessed a disturbing 

shift in phishing delivery mechanisms—from digital-

only vectors to physical mediums, especially QR 

codes. QR (Quick Response) codes have become 

ubiquitous due to the rise in contactless services 

during the COVID-19 pandemic. They are now used 

in retail transactions, restaurant menus, billboards, 

business cards, banking kiosks, public posters, and 

even academic campuses. Attackers exploit this 

widespread trust and reliance by embedding phishing 

links within QR codes—a strategy commonly 

referred to as “Quishing.” 
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2-LITERATURE SURVEY 

Phishing detection has been a widely studied 

problem in cybersecurity over the past two decades, 

with researchers and organizations continuously 

developing systems to counter the ever-evolving 

tactics used by attackers. As phishing methods grow 

more complex and deceptive, traditional detection 

methods are proving insufficient, thus driving the 

need for advanced, intelligent systems powered by 

machine learning and AI. 

In this chapter, we review various scholarly works, 

tools, frameworks, and algorithms that address 

phishing detection, especially those involving URL 

analysis, machine learning classification, and the 

emerging field of QR code-based phishing. We 

categorize the literature into multiple themes: 

traditional methods, machine learning-based 

approaches, hybrid models, and recent efforts to 

address QR code threats. 

Traditional Phishing Detection Techniques 

Early phishing detection strategies largely relied on 

rule-based and heuristic methods: 

Blacklisting and Whitelisting 

Blacklisting maintains a database of known phishing 

URLs and blocks access to them. While this method 

is fast and easy to implement, it suffers from 

significant limitations: 

• Ineffective against zero-day phishing URLs. 

• Requires constant updating of the database. 

• Limited generalizability across dynamic or 

obfuscated URLs. 

Examples: 

• Google's Safe Browsing API 

• Microsoft SmartScreen Filter 

Heuristic-Based Filters 

Heuristic filters examine URL patterns and webpage 

content to identify phishing characteristics. Rules 

might include: 

• Excessive use of subdomains 

• Use of IP addresses instead of domain names 

• Unusually long URLs 

These methods provide broader detection than 

blacklists but can suffer from false positives and 

require manual tuning of rules, reducing scalability. 

Machine Learning Approaches in Phishing 

Detection 

Recent studies demonstrate that machine learning 

(ML) algorithms outperform traditional methods due 

to their ability to generalize patterns and adapt to 

evolving attack strategies. 

Lexical Feature-Based Models 

Several researchers have extracted features from the 

URL string itself, such as: 

• Number of dots 

• URL length 

• Special characters used 

• Keyword matching (e.g., “login”, “secure”, 

“bank”) 

Abdelhamid et al. (2014) used decision trees on 

lexical features and achieved high detection accuracy 

without needing to fetch webpage content, thus 

reducing overhead. 

Host-Based Feature Models 

These models analyze hosting data like: 

• WHOIS registration info 

• DNS age 

• IP reputation 

Whittaker et al. (2010) proposed a machine learning 

model using host-based features in Google's phishing 

detection engine, improving detection speed and 

accuracy. 
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Combined Feature Models 

Combining lexical, host-based, and content-based 

features leads to better performance. 

Ma et al. (2009) presented a “Beyond Blacklists” 

approach using online learning algorithms that detect 

malicious URLs based on a dynamic feature set. 

Their model handled millions of URL queries per 

day efficiently. 

 

3-PROPOSED METHOD 

Phishing attacks have rapidly evolved in recent 

years, exploiting both digital and physical interaction 

mediums. Traditional URL-based phishing, 

primarily delivered via email or compromised 

websites, remains prevalent, but attackers are 

increasingly leveraging new methods such as QR 

code-based phishing, which is significantly harder to 

detect due to its physical nature and indirect access. 

The methodology described in this chapter focuses 

on developing a comprehensive and modular 

phishing detection system built using machine 

learning, designed in two phases. 

The first phase builds a foundation using supervised 

machine learning algorithms trained on carefully 

extracted features from URLs. In the second phase, 

the same trained models are extended to work with 

QR codes by decoding and classifying the 

embedded URLs, thereby creating a robust and 

scalable phishing detection architecture. 

This chapter outlines the theoretical and practical 

methodologies adopted for both phases, covering 

data handling, feature design, model training, 

implementation, and user interaction through a 

unified interface. 

System Overview 

Our system architecture is structured as a modular, 

multi-input pipeline, where different types of inputs 

(URLs or QR codes) are funneled through the same 

processing and classification backend. This approach 

ensures: 

• Code reusability across different input types, 

• Improved maintainability, 

• Scalability to future input sources (like emails, 

PDFs, or attachments). 

The pipeline consists of the following main stages: 

1. Input Interface: Accepts URL strings or QR 

code images. 

2. QR Code Decoder (Phase 2): Decodes images 

to extract hidden URLs. 

3. Feature Extractor: Converts URLs into 

numerical vectors. 

4. Classifier (ML Model): Predicts whether a URL 

is phishing or legitimate. 

5. Output Display: Shows prediction with 

additional details and optional logging. 

This flow ensures a clear separation of concerns 

while maintaining a consistent prediction core. The 

architecture is language-agnostic but implemented in 

Python using libraries such as scikit-learn, pandas, 

pyzbar, and OpenCV. 

Phase 1: URL-Based Phishing Detection 

3.3.1 Data Collection 

Data plays a central role in supervised machine 

learning. In Phase 1, we assembled a rich dataset of 

over 20,000 URLs comprising both legitimate and 

phishing examples. This dataset was compiled from 

the following reputable sources: 

• PhishTank: Regularly updated repository of 

verified phishing URLs submitted by users and 

verified by the community. 

• OpenPhish: Provides real-time feeds of ongoing 

phishing campaigns and zero-day attacks. 

• Alexa Top Sites: Provides a ranking of the most 

visited legitimate websites used as a base for 

collecting safe URLs. 
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3.4 Phase 2: QR Code-Based Phishing Detection  

Motivation and Relevance 

QR codes encode data such as URLs, contact 

information, or text, and are now common in public 

spaces. Unfortunately, this accessibility has been 

exploited for phishing: 

• Malicious QR codes are printed on posters or 

business cards. 

• Fake QR stickers are pasted over original ones. 

• Phishing QR codes are embedded in PDFs or 

messages. 

Unlike text-based URLs, QR content is invisible 

until scanned, making it ideal for tricking users. As 

such, extending our phishing detection to support QR 

decoding became critical. 

Input Interface 

The QR module accepts two types of input: 

• File Upload: User selects an image from local 

storage. 

• Live Webcam Scan: Using cv2.VideoCapture() 

from OpenCV, we enable live scanning. 

 

4-SOFTWARE AND HARDWARE 

REQUIREMENTS 

For the successful design, development, testing, and 

deployment of the phishing detection system 

described in this report, specific software and 

hardware requirements were identified and 

implemented. These requirements ensure that the 

system is efficient, compatible across platforms, and 

scalable for future improvements. The system 

comprises two core modules—one for URL-based 

phishing detection and the other for QR code-based 

phishing detection—both integrated into a user-

friendly web interface. 

This chapter outlines the essential software and 

hardware components needed to build and run the 

application effectively. 

Software Requirements 

The system development relied on various software 

libraries, development tools, and environments. The 

stack was selected to optimize for rapid 

development, performance, scalability, and ease of 

maintenance. 

Programming Languages and Environments 

Component Tool/Language Description 

Core Programming 

Language 
Python 3.8+ 

Used for building all core functionalities including feature 

extraction, QR decoding, and ML prediction. 

Web Framework Django 4.x 
Backend framework for creating the phishing detection web 

interface and managing API calls. 

Frontend 
HTML,CSS, 

JavaScript 
Used to build the user interface and enhance user interaction. 

Template Engine Django Templates For rendering dynamic HTML content and form handling. 

 

Libraries and Packages 

Machine Learning & Data Processing: 

• scikit-learn: For implementing Random Forest, 

Decision Tree, and SVM classifiers. 

• pandas: For dataset manipulation and feature 

engineering. 

• numpy: For numerical processing and array 

operations. 
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• joblib: For model serialization and deployment. 

 QR Code Decoding: 

Hardware Requirements 

Although the system is not computationally 

intensive, certain minimum hardware specifications 

are necessary for optimal functioning, especially 

when handling real-time QR code decoding and 

camera input. 

 

5-SYSTEM DESIGN AND ARCHITECTURE 

This chapter presents the architectural and structural 

design of our two-phase phishing detection system. 

A well-structured system architecture is essential for 

ensuring modularity, scalability, efficiency, and ease 

of maintenance. The design of this system allows for 

smooth integration between two input sources (URLs 

and QR codes) and a single intelligent backend that 

performs feature extraction and classification. 

To clearly communicate the system's architecture, 

this chapter includes detailed flow diagrams, UML 

models, and module explanations, showcasing how 

different system components interact from input 

acquisition to prediction output. 

System Overview 

The phishing detection system is designed as a 

modular web-based application with a machine 

learning backend. It comprises two major input 

modules: 

1. URL Input Module – Direct user input via a 

form. 

2. QR Code Input Module – Accepts image upload 

or scans live from a webcam. 

Both modules lead to a common backend: 

• Feature extraction engine 

• Trained machine learning model 

• Result classification and response display 

This separation of input and core logic enhances 

reusability and ensures consistent prediction 

quality across modalities. 

System Flow Diagram 

Here is the high-level flow of the system: 

UML Use-Case Diagram 

• User: Inputs a URL or QR code, views the result. 

• System: Decodes, classifies, and displays phishing 

detection. 

Use Cases: 

• Submit URL for analysis 

• Upload/scan QR code 

• View phishing detection result 

• Receive alert 

Class Diagram (Simplified View) 

• InputHandler: Accepts and validates input 

• QRDecoder: Handles image decoding 

• FeatureExtractor: Converts URLs into feature 

vectors 

• PhishingModel: Loads and applies ML model 

• ResultDisplay: Shows output and alert 
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Activity Diagram 

 

                                                        Fig: 1 Activity Diagram 

6-IMPLEMENTATION AND REVOLUTION 

Implementation Strategy 

The phishing detection system was implemented in 

two successive phases, each building upon the other 

to create a unified and extensible solution. In the first 

phase, we developed a URL-based phishing 

detection model using supervised machine learning. 

The second phase enhanced the system by 

integrating QR code scanning capabilities, allowing 

detection of phishing links embedded within QR 

images. Both modules were carefully designed to be 

modular and scalable so that the system could be 

adapted in future iterations without complete 

redesign. 

The backend logic was implemented using Python 

3.8, chosen for its wide ecosystem of machine 

learning and data science libraries. For the frontend, 

the Django framework was used to provide a web 

interface that supports both direct URL entry and QR 

code uploads or scanning through webcam. This 

architecture allowed a clear separation between data 

processing, machine learning prediction, and user 

interaction. 

The dataset for training the phishing detection model 

consisted of both phishing and legitimate URLs. 

Phishing data was collected from dynamic online 

sources like PhishTank and OpenPhish, which are 

frequently updated to reflect real-world attack 

patterns. For legitimate URLs, Alexa’s top websites 

and manually curated entries from well-known 

brands and services were used. After cleaning and 

deduplication, a balanced dataset of approximately 

20,000 samples was created. These entries were then 

labeled and passed through a feature engineering 

pipeline that extracted lexical, structural, and 

domain-related attributes from each URL. Features 

such as URL length, presence of an IP address, count 

of subdomains, HTTPS usage, and domain age were 

among the most important. 
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To process and convert the raw URLs into usable 

inputs for the model, a feature extraction module was 

created. This module parsed each URL, derived 

relevant features, and transformed them into a fixed-

length numerical vector. These vectors served as 

input to the classification models. Three machine 

learning algorithms were trained and tested: Random 

Forest, Support Vector Machine, and Decision Tree. 

After rigorous testing through k-fold cross-

validation, Random Forest was selected as the final 

model due to its superior accuracy, robustness to 

noise, and ability to handle imbalanced data. 

Once trained, the model was serialized using Joblib 

and integrated with the Django backend. Users could 

access the application through a simple web page 

where they would enter a URL and receive a 

prediction in real time. The response was visually 

represented using red and green indicators, helping 

users understand the result without needing technical 

knowledge. This design focused on usability, making 

the system suitable for both general users and 

cybersecurity learners. 

The second phase of implementation added QR code 

support to the system. Using OpenCV and Pyzbar, 

the application was enhanced to accept QR inputs 

from either image uploads or live webcam scanning. 

When a QR code was scanned, the embedded data 

was decoded and checked for a valid HTTP or 

HTTPS URL. If valid, the URL was passed through 

the same feature extractor and classifier used in 

Phase 1. This design ensured that no retraining or 

model adjustment was necessary, as the 

classification engine remained the same regardless of 

input type. 

The QR scanning module supported various image 

formats including PNG, JPEG, and BMP. During 

testing, real-time decoding had an average accuracy 

of 94.2%, depending on lighting conditions and 

camera resolution. Live scanning was optimized by 

adjusting the capture frame rate and adding noise 

reduction steps in preprocessing. Once a QR code 

was successfully decoded, the prediction and 

feedback were displayed to the user instantly. 

Evaluation and Performance Analysis 

To evaluate the system’s effectiveness, a series of 

tests were conducted on different datasets and 

environments. The classification accuracy of the 

model on unseen test data was over 96.8%. The 

Random Forest classifier achieved the highest F1-

score among all models, demonstrating excellent 

balance between precision and recall. SVM showed 

competitive performance but required longer 

inference times, making it less suitable for real-time 

applications. The Decision Tree model, though 

interpretable, showed a slight tendency to overfit and 

had a slightly higher false positive rate than the 

ensemble model. 

For the QR code-based extension, end-to-end 

response time from QR scan to prediction output 

averaged around 1.8 seconds. This included the time 

taken to capture the image, decode the QR, extract 

features, and classify the URL. Accuracy of 

prediction remained high even when QR codes were 

presented in physical form through a printed 

document or phone screen, confirming the 

robustness of the computer vision module. 

To test scalability, we ran stress tests simulating 500 

URL queries and 100 QR code scans submitted 

within a short time interval. The Django server, 

running on a system with 8 GB RAM and an i5 

processor, handled the requests without failures or 

timeouts. CPU and memory usage remained within 

optimal bounds, showing that the system could scale 

further if needed. The design allows for horizontal 

scaling in production environments, where multiple 
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instances of the application can serve users 

concurrently. 

Visual tools were used to support the evaluation. 

Confusion matrices showed minimal false negatives, 

a critical success factor in phishing detection where 

missing an actual phishing site could have severe 

consequences. ROC curves were plotted for all 

classifiers, and the Random Forest model recorded 

an AUC of 0.987, indicating excellent predictive 

capability. Feature importance was also analyzed, 

confirming that domain age, number of redirections, 

and HTTPS usage were the most significant 

indicators. 

User testing was conducted with a sample group 

consisting of students, faculty members, and IT 

professionals. The majority of participants found the 

system intuitive, informative, and fast. Some 

suggested enhancements included adding a warning 

icon for phishing results, and improving error 

messages when no QR is detected. These were 

implemented in the final version. Users appreciated 

the system’s simplicity, especially in the QR module 

where scanning and feedback were seamless. 

Cross-platform and cross-browser testing confirmed 

that the system is compatible with Windows, Linux, 

and macOS operating systems, and works smoothly 

on Chrome, Firefox, and Edge browsers. On devices 

with limited screen resolution, responsive design 

techniques ensured proper rendering of all interface 

elements. 

Our system was also benchmarked against traditional 

blacklist-based phishing filters. In a controlled 

experiment involving 1,000 URLs (500 phishing and 

500 legitimate), the blacklist-based checker missed 

around 12% of phishing URLs due to being outdated 

or not yet flagged. In contrast, our ML-based 

classifier successfully identified 96.8% of the 

phishing URLs, including many not yet indexed in 

any blacklist. This validated the importance of 

predictive, behavior-based detection methods over 

static filtering. 

We further tested how the system would respond to 

“camouflaged” QR phishing attempts—those that 

led to short URLs or those with intentionally 

misspelled domain names (typosquatting). Our 

model handled such cases well, provided that feature 

patterns indicated phishing-like behavior. However, 

like any detection model, it is not immune to 

adversarial  

samples, and care must be taken to update the dataset 

periodically with new threats to maintain 

performance. 

In summary, the evaluation phase demonstrated the 

high performance, reliability, and usability of our 

system. The modular design enabled rapid 

integration of QR scanning without disrupting the 

original URL classifier. The system performed well 

under load, maintained high accuracy, and was 

accessible to users without technical expertise. These 

results validate the project's central hypothesis: that 

a hybrid, multi-modal phishing detection system 

based on machine learning is both feasible and 

effective in combatting modern cyber threats. 

 

7-RESULT AND DISCUSSION 

The results of the phishing detection system 

developed in this project are the outcome of an 

extensive implementation and testing cycle that 

spanned both phases—URL-based detection and QR 

code-based detection. After completing the model 

training, interface integration, and backend logic, the 

system was tested with real-world phishing and 

legitimate inputs to evaluate its performance across 

accuracy, efficiency, and usability. 

In the first phase, the trained machine learning 

models were tested using unseen URL datasets to 
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assess their predictive performance. These models 

were trained on a balanced dataset composed of 

phishing and legitimate URLs that had been carefully 

preprocessed and feature-engineered.  

 

Fig 1 Phishing datasets 

During evaluation, the models displayed consistent 

accuracy across multiple test runs, and the Random 

Forest classifier in particular demonstrated superior 

performance. Its ability to handle nonlinear 

relationships and noisy data made it particularly 

suitable for the varied and unpredictable structure of 

phishing URLs. It outperformed both the Support 

Vector Machine and Decision Tree models in terms 

of accuracy, precision, and recall. The Random 

Forest model was thus selected as the core classifier 

for both phases. 

 

Fig 2 Phishing test & training 

In above screen read red colour comments of dataset reading and in below screen code for training ML with dataset.  

 

                                              Fig 3 Python code for Phishing detection  

To run project you need to install python 3.7 version 

and then open command prompt and install below 

packages by using below commands pip install 

pandas==0.25.3 pip install matplotlib==3.1.1 pip 

install numpy==1.19.2 pip install scikit-

learn==0.22.2.post1 pip install seaborn==0.10.1 pip 

install Django==2.1.7  

Now double click on ‘run.bat’ file to start DJANGO 

python web server and will get below screen.  
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                                                                   Fig 4 Python web server 

In  above screen server started and now open browser 

 

Fig 5 User Interface 

 

This is interface for detecting fake QR code and phishing URL website     

 

Fig 6 : Admin login 

This is admin login page. By login through username=admin and password=admin, it will open below page. 
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Fig:7 Admin Page 

 

In this admin can run machine learning algorithms such as SVM, RF and DT. Also test the URL and R code. 

 

                                           Fig: 8 Machine Learning algorithm Performance 

 

8-CONCLUSION 

This project set out to develop a robust, real-time 

phishing detection system that addresses both 

traditional and modern vectors of attack. With 

phishing becoming more sophisticated and attackers 

adopting diverse techniques such as QR-based 

deception, there was a need for a system that is both 

intelligent and adaptable. The two-phase 

implementation model adopted in this work 

successfully demonstrated that machine learning can 

be used to detect phishing attempts from standard 

URLs as well as from QR codes that embed 

malicious links. 

In the first phase of the project, a machine learning-

based phishing detection model was trained on a rich 

set of lexical, structural, and domain-level features 

extracted from URLs. By evaluating multiple 

algorithms, the Random Forest classifier was 

selected as the most reliable and accurate. It 

delivered strong results on validation datasets and 

handled a variety of input styles and structures with 

minimal false positives and negatives. The feature set 

proved effective in distinguishing phishing websites 

from legitimate ones without relying on deep content 

or page-level analysis, making it lightweight and 

suitable for real-time application. 
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Building on this foundation, the second phase 

introduced an innovative layer: detecting phishing 

threats through QR code analysis. With the 

increasing prevalence of QR codes in contactless 

transactions, marketing, and daily digital use, 

attackers have begun using QR codes as a tool to 

disguise malicious URLs. The system’s ability to 

decode QR images, extract embedded links, and 

process them using the same feature extraction and 

classification pipeline validated the modularity and 

scalability of the design. This feature addresses an 

often overlooked but increasingly exploited attack 

surface. 

The system achieved high accuracy in both phases, 

with strong performance across all key metrics such 

as precision, recall, and F1-score. More importantly, 

it proved to be practical, accessible, and user-

friendly. The inclusion of a clean web interface, real-

time feedback, and QR scanning capability positions 

this tool as a potentially deployable solution not just 

for academic demonstration but also for real-world 

use cases in cybersecurity education, browser 

integration, and mobile safety apps.Throughout the 

project, emphasis was placed on designing a system 

that is modular, interpretable, and extensible. The 

clear separation between input handling, feature 

extraction, model prediction, and output display 

allows for futureenhancements to be implemented 

without restructuring the system. For example, new 

input channels—such as phishing emails, document 

links, or even social media messages—could be 

added with relative ease by linking them to the 

existing prediction pipeline.While the results 

achieved are promising, there are several areas where 

the project can be extended and improved. First, the 

current model relies on a static dataset. In real-world 

scenarios, phishing websites evolve rapidly, and their 

features may change over time. Implementing a 

scheduled update mechanism to periodically retrain 

the model with recent phishing data would help 

maintain the system’s relevance and accuracy. 

Integrating threat intelligence feeds or APIs from 

live phishing databases could automate this process 

and keep the system responsive to new attack 

patterns. 

Second, the system currently operates as a standalone 

web application. For broader adoption, it could be 

packaged into browser extensions, Android/iOS 

apps, or desktop utilities that monitor links in real-

time. On mobile platforms, especially, the QR 

scanning feature could be extremely useful in 

helping users verify codes found in restaurants, ads, 

bills, or messages. Lightweight wrappers could be 

developed to host the trained model offline for use in 

edge scenarios where internet connectivity is limited. 

Another potential enhancement involves extending 

the classification model to explain its predictions. 

Currently, the system offers a binary output—

phishing or legitimate—but users may benefit from 

seeing a breakdown of key features that led to the 

classification. This would not only help with trust 

and transparency but could also serve as an 

educational tool, especially for students or 

employees learning about cybersecurity. 

There is also room to explore deep learning models 

for phishing detection. While classical machine 

learning approaches were chosen for their speed and 

interpretability, models such as LSTM or BERT-

based classifiers could be evaluated in future work, 

especially for analyzing URLs in combination with 

page content or metadata. 

In summary, the project succeeded in meeting its 

objectives of developing a flexible and effective 

phishing detection system using machine learning. 

The two-phase structure enabled the detection of 

threats from both standard URLs and QR codes—
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addressing a critical and timely need in 

cybersecurity. The system is fast, accurate, and 

designed for further evolution, making it a valuable 

starting point for future work in phishing defense 

systems. By combining technical.strength with 

practical usability. 
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