
. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/406-414

 Mudigiri Sankalpa et. al., / International Journal of Engineering & Science Research

406

Smart Traffic Control System Using Image AI

P Mounika, Mudigiri Sankalpa, Dandu Sathvika Padmavathi, Kancharakuntla Sreeja

1Associate Professor, Department Of Cse, Bhoj Reddy Engineering College For Women, India.

2,3,4B. Tech Students, Department Of Cse, Bhoj Reddy Engineering College For Women, India.

ABSTRACT

Learning-based traffic control algorithms have

recently been explored as an alternative to existing

traffic control logics. The reinforcement learning

(RL) algorithm is being spotlighted in the field of

adaptive traffic signal control. However, no report

has described the implementation of an RL-based

algorithm in an actual intersection. Most previous

RL studies adopted conventional traffic parameters,

such as delays and queue lengths to represent a

traffic state, which cannot be exactly measured on-

site in real time. Furthermore, the traffic parameters

cannot fully account for the complexity of an actual

traffic state. The present study suggests a novel

artificial intelligence that uses only video images of

an intersection to represent its traffic state rather

than using handcrafted features. In simulation

experiments using a real intersection, consecutive

aerial video frames fully addressed the traffic state

of an independent four-legged intersection, and an

image-based RL model outperformed both the actual

operation of fixed signals and a fully actuated

operation.

1. INTRODUCTION

Smart Traffic Control Systems range from basic

queue-based methods to advanced algorithms like

optimal control theory. Recently, reinforcement

learning (RL) has shown promise in traffic

management due to its ability to optimize real-time

control without relying on pre-set training data. RL

agents can manage signals for single or multiple

intersections, continuously improving control

decisions. Simulations have shown RL’s superiority

over traditional methods, suggesting it may dominate

future traffic control.

However, RL-based control faces two key challenges

in real-world applications. First, accurately

recognizing traffic states is crucial for effective

RL decision-making. Conventional parameters like

delays and queue lengths are difficult to measure in

real-time with current surveillance systems. The

adoption of vehicle-to-junction communication

technology, necessary for accurate data collection, is

still in progress. As a result, most RL models remain

limited to simulations.

Second, traditional traffic parameters may not fully

capture the complexity of traffic states. This study

proposes a solution by integrating RL with

convolutional neural networks (CNNs) to analyse

aerial images of intersections, offering a more

comprehensive method for recognizing traffic

conditions and optimizing signal control.

Simulation results demonstrate the feasibility of this

approach, highlighting its potential for real-world

applications and suggesting the need for further

research to implement RL-based traffic control in

practice.

Existing System

In the current traffic management system, controlling

traffic flow often requires manual intervention.

Traffic police or operators assess which side of an

intersection has the heaviest traffic and then adjust

the signal timing to provide a green light for a longer

duration on that side. While this approach may work

during peak traffic hours, it has significant

limitations, especially during off-peak times like late

at night or early in the morning. Manual traffic

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/406-414

 Mudigiri Sankalpa et. al., / International Journal of Engineering & Science Research

407

management is labor-intensive, time-consuming, and

prone to human error, which can lead to

inefficiencies and delays.

Additionally, relying on manual adjustments makes

it challenging to respond to dynamic traffic patterns

in real-time. Factors such as unexpected surges in

traffic due to accidents or events cannot always be

handled promptly. During late hours, when operators

are not consistently present, the system often relies

on fixed signal timings, which fail to adapt to

real-time traffic conditions.

To address these limitations, artificial intelligence

(AI) and automated traffic control systems have

been introduced. By utilizing AI, traffic signals

can be controlled automatically based on real-time

data, ensuring smoother traffic flow without the need

for constant human intervention. These systems are

particularly effective during times when manual

control is impractical, significantly improving

overall traffic efficiency.

Proposed System

To overcome the limitations of the existing traffic

system, an object detection-based approach is

proposed to automate traffic management. This

system uses input images or video footage from

traffic cameras to monitor traffic conditions. Object

detection algorithms analyze the images to detect and

count vehicles, calculating the traffic density as a

percentage.

The calculated percentage is then compared to a

predefined threshold value. Based on this

comparison, the system dynamically adjusts signal

timings. Intersections with heavier traffic receive

longer green signals, while areas with lighter traffic

get shorter green signals.

This automated method eliminates the need for

manual intervention, enabling real-time traffic

monitoring and efficient signal control. It

significantly reduces delays, congestion, and fuel

consumption. By adapting to current traffic

conditions, this system not only improves traffic

flow but also decreases environmental impacts,

offering a smarter and more sustainable solution for

managing traffic effectively.

2-REQUIREMENT ANALYSIS

Functional Requirements

Functional requirements define the core operations

that the system must perform. Functional

requirements specify the actions or tasks a system

must perform to meet user needs and achieve its

objectives. These requirements outline what the

system should do, including specific features,

functionalities, and interactions. They describe the

system's behavior, such as processing data,

generating reports, executing calculations, or

providing user interfaces for specific operations.

Functional requirements are directly tied to the

purpose of the system and ensure that it delivers

the desired outcomes, aligning with user

expectations and project goals. These are derived

from the objectives of the traffic control system and

include all necessary features to ensure it functions

as intended.

Admin Module

In this project, the Admin is the sole module and

represents the entire system. All functionalities are

handled automatically by the system, eliminating the

need for any manual supervision.

This module allows an administrator to manage

the adaptive traffic signal control system. It

includes the following core functionalities:

Non-Functional Requirements

Non-functional requirements define how a system

operates rather than what it does. They focus on the

quality attributes and performance of the system,

such as usability, reliability, security, and scalability.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/406-414

 Mudigiri Sankalpa et. al., / International Journal of Engineering & Science Research

408

These requirements ensure the system is intuitive to

use, consistently available, and capable of handling

varying workloads efficiently. Non-functional

requirements also address aspects like compatibility

with different platforms, ease of maintenance, and

speed of execution. They are crucial for ensuring that

the system not only fulfills its intended functions but

does so in a manner that is effective, secure, and user-

friendly.

Non-functional requirements describe the quality

attributes of the system. These ensure that the system

performs efficiently, securely, and is user-friendly.

Portability

• The system should run on various operating systems

like Windows, Linux, and macOS.

• Minimal changes should be required for deployment

on different platforms.

• All dependencies should be cross-platform

compatible.

Reliability

• The system must provide consistent and stable

output under all traffic conditions.

• It should be fault-tolerant and capable of recovering

from failures.

• System performance should not degrade over time.

Usability

• The user interface should be simple and intuitive.

• Non-technical users should be able to operate the

system easily.

• Visuals and controls must be clearly labeled and

user-friendly.

Hardware Requirements

Hardware Requirements are the most common set of

requirements defined by any operating system or

software application is the physical computer

resources, also known as hardware.

• Processor : Intel i3, i5

• RAM : 4 GB

• Hard Disk : 100GB

• Graphics : GPU support for deep learning model training

Software Requirements

The software requirements document is the

specification of the system. It should include both

definition and a specification of the requirements. It

is a set of what the system should do rather than how

it should do it. The software requirements provide

a basis for creating the software requirements

specification. It is useful in estimating cost, planning

team activities, performing tasks and tracking the

team’s progress throughout the development

activity.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/273-278

 Mudigiri Sankalpa et. al., / International Journal of Engineering & Science Research

409

• Operating System : Windows 11

• Programming Language : Python 3.6

• IDE : Jupyter Notebook

• UML Tool : StarUML

• DFD Tool : DFD Drawer

• Libraries : OpenCV, NumPy, TensorFlow

3-DESIGN

Architecture

Architecture refers to the high-level structure of a

system, defining its components, their

relationships, and how they work together to

achieve specific goals. It serves as a blueprint for

design and development, guiding the implementation

process while ensuring alignment with functional

and non-functional requirements.

Key Elements of Architecture:

1. System Components:

Describes the distinct elements or modules that

perform specific functions within the system.

2. Interconnections:

Specifies how components interact, including

communication protocols, data flow, and interfaces.

3. Data Architecture:

Defines how data is collected, stored, processed, and

accessed to ensure consistency and reliability.

4. Technology Stack:

Identifies the tools, frameworks, and platforms used

for development and deployment.

5. Design Patterns:

Incorporates proven, reusable solutions to address

recurring design challenges effectively.

6. Non-Functional Considerations:

Ensures the architecture accounts for performance,

scalability, security, reliability, and maintainability.

7. Deployment Strategy:

Outlines how the system is implemented in the

infrastructure, including configurations and

environments.

8. Integration Points:

Details how the system interfaces with external

systems, services, or APIs.

A well-designed architecture is essential for creating

systems that are efficient, scalable, maintainable, and

capable of adapting to changing requirements. It

provides a framework for collaboration among

stakeholders, ensuring the system meets its intended

purpose.

Software Architecture

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/273-278

 Mudigiri Sankalpa et. al., / International Journal of Engineering & Science Research

410

Fig.3.1.Software Architecture

In software architecture a Reinforcement Learning

(RL) based Smart Traffic Control System, where an

AI agent (depicted as a brain) learns to manage

traffic lights by interacting with its environment (the

road intersection). The environment includes live

traffic conditions captured via surveillance cameras.

The agent observes the state of traffic—vehicle

count, lane density, and signal timings—and uses

this to make decisions.

The state represents traffic input data, possibly as

preprocessed images or numerical representations of

vehicle positions and counts from multiple lanes.

The agent processes this state and takes an action—

changing the traffic light (red, yellow, or green) for

a particular lane. This action directly influences the

traffic flow and affects how vehicles move through

the intersection.

After performing an action, the system receives a

reward based on its effectiveness—such as reduced

waiting time, fewer traffic jams, or balanced lane

usage. This reward helps the agent learn better

strategies over time. Through many such

interactions, the agent gradually optimizes its

control policy, creating a dynamic and intelligent

traffic light system that adapts to real-time road

conditions.

Technical Architecture

Fig.3.2.Technical Architecture

The technical architecture is simplified web technology stack for implementing the Smart Traffic

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/273-278

 Mudigiri Sankalpa et. al., / International Journal of Engineering & Science Research

411

Controlling System. The left block represents

HTML and CSS, which are responsible for

designing the frontend UI—the part of the system

that users interact with. Through this interface, users

can monitor live traffic visuals, view the vehicle

count per lane, and check signal status. It can also

include controls for manual override and system

configuration.

The middle block represents Python, which acts

as the core programming language used for the

backend logic. Python handles communication

between the frontend and the backend logic,

processes data (like vehicle count received from

the YOLO model), and controls the flow of

information. In this project, Python also integrates

with image processing libraries

(like OpenCV) and AI models to analyze traffic

camera inputs and make smart decisions based on

the data.

The final block represents Django, a powerful

Python-based web framework. Django helps in

managing the web server, routing requests,

connecting to databases, and serving HTML

templates dynamically. It also manages API calls

that fetch real-time traffic data or trigger signal

changes. Together, Django and Python ensure that

the AI decisions made by the system are effectively

integrated into a working web-based traffic control

interface.

4-IMPLEMENTATION

Python

Python is a powerful, high-level, interpreted

programming language that has gained immense

popularity due to its simplicity and flexibility.

Created by Guido van Rossum and first released

in 1991, Python was designed with an emphasis on

code readability and a syntax that allows developers

to express concepts in fewer lines of code

compared to other programming languages such

as Java or C++. It follows multiple programming

paradigms, including procedural, object-oriented,

and functional programming.

As an open-source language, Python has a vibrant

community and an extensive ecosystem of libraries

and frameworks. Whether it's web development,

machine learning, data analysis, desktop

applications, or scripting, Python offers tools and

packages that make development easier and more

efficient. Python’s clean and readable syntax makes

it an excellent choice for both beginner programmers

and experienced developers who are working on

complex applications.

Python is platform-independent, which means that

Python programs can run on different operating

systems like Windows, Linux, and macOS without

modification. Furthermore, Python is dynamically

typed, meaning you don't need to specify variable

types — Python automatically infers the data type at

runtime. These features, among many others, make

Python an ideal language for rapid application

development and a staple in both academic and

industrial environments.

Key Features of Python

1. Easy-to-Read and Clean Syntax

• Purpose: Enhances readability and reduces code

complexity.

• Usage: Python uses indentation (whitespace) to

define blocks instead of curly braces.

2. Dynamically Typed Language

• Purpose: Avoids the need for variable type

declaration.

• Usage: Python identifies the type automatically at

runtime.

3. Extensive Standard Library

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/273-278

 Mudigiri Sankalpa et. al., / International Journal of Engineering & Science Research

412

• Purpose: Provides built-in modules for common

programming tasks.

• Usage: Easily perform operations like file handling,

date/time management, etc.

4. Interpreted and Interactive

• Purpose: Supports quick testing and real-time

debugging.

• Usage: Use Python shell to test code instantly.

5. Cross-Platform Compatibility

• Purpose: Run the same code on multiple OS

platforms.

• Usage: Python scripts run without modification on

Windows, Linux, and macOS.

6. Object-Oriented Programming (OOP)

• Purpose: Promotes code reuse and encapsulation.

• Usage: Supports classes, objects, and inheritance.

Advantages of Python

1. Beginner-Friendly Language

Python’s simple syntax, close to English, makes it an

ideal first language for new programmers. You can

start writing functional programs with minimal

learning curve, which encourages experimentation

and fast learning.

2. Vast Standard Library

Python comes with a comprehensive standard library

that includes modules for file I/O, regular

expressions, threading, networking, and even web

services. This reduces development time and

avoids the need to reinvent the wheel.

3. Large Community Support

Python boasts one of the largest programming

communities. This means a wealth of tutorials,

forums, documentation, and third-party tools are

available, helping both beginners and professionals

solve problems faster.

5-SCREENSHOTS

Fig.1. Index page

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/406-414

 Mudigiri Sankalpa et. al., / International Journal of Engineering & Science Research

Fig.2. Uploading the Images

Fig.3. Result page

6-CONCLUSION

This study introduces a pioneering image-based

Reinforcement Learning (RL) algorithm for traffic

signal control, offering an alternative to traditional

methods that rely on traffic detectors. Unlike

previous models that depend on predefined traffic

parameters, this approach uses real-time image data

to represent the traffic state, making it more adaptive

and scalable. The algorithm successfully reduced

average vehicle delay by more than 23% and

outperformed both actual and fully actuated signal

operations in all three evaluated performance

measures.

One of the key performance indicators, the WAVE

(Weighted Average Vehicle Excess), also showed

noticeable improvement. The proposed model

recorded a mean WAVE reduction of 21% compared

to actual operations and 12% compared to fully

actuated systems. These improvements validate the

potential of image-based RL in enhancing traffic

flow and minimizing congestion without the need for

expensive detector infrastructure.

However, the model’s performance stability remains

a concern. Although it achieved overall superior

results, the delay times fluctuated more than those

observed in reference models. This inconsistency

highlights the importance of identifying and tuning

critical hyper- parameters. Additionally, the model’s

current application is limited to a single independent

intersection, suggesting the need for scalability and

broader testing in more complex traffic networks.

REFERENCES

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/406-414

 Mudigiri Sankalpa et. al., / International Journal of Engineering & Science Research

[1] Boureau, Y.L., Ponce, J. and LeCun, Y.

(2023) A Theoretical Analysis of Feature Pooling

in Visual Recognition. In International Conference

on Machine Learning

[2] Chung, J. and Sohn, K. (2023) Image-based

learning to measure traffic density using a deep

convolutional neural network (CNN), IEEE

Transactions on Intelligent Transport Systems,

DOI:10.1109/TITS.2017.2732029

[3] Abdulhai, B., Kattan, L.: (2022)

Reinforcement learning: Introduction to theory and

potential for transport applications. Canadian Journal

of Civil Engineering 30(6), 981–991.

[4] Abdulhai, B., Pringle, R., Karakoulas, G.:

(2022) Reinforcement learning for true adaptive

traffic signal control. Journal of Transportation

Engineering 129(3), 278–285.

[5] Arel, I., Liu, C., Urbanik, T., Kohls, A.:

(2021) Reinforcement learning-based multi-agent

system for network traffic signal control. Intelligent

Transport Systems, IET 4(2), 128–135

[6] Baird., L. (2021) Residual algorithms:

Reinforcement learning with function

approximation.

ICML, pages 30–37

[7] Abdoos, M., Mozayani, N., Bazzan, A.: (2020)

Hierarchical control of traffic signals using q-

learning with tile coding. Applied Intelligence 40(2),

201–213.

[8] Dauphin, Y. N., de Vries, H., Chung, J.,

&Bengio, Y. (2020). RMSProp and equilibrated

adaptive learning rates for non-convex optimization.

arXiv preprint arXiv:1502.04390.

[9] Corazza, M., &Sangalli, A. (2020). Q-Learning

and SARSA: a comparison between two intelligent

stochastic control approaches for financial trading.

University Ca'Foscari of Venice, Dept. of

Economics Research Paper Series No, 15.

[10] Ciresan, D., Meier, U., Masci, J., Gambardella,

L.M., Schmidhuber, J. (2019) Flexible, High

Performance Convolutional Neural Networks for

Image

