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Abstract

Reliable estimation of software development effort is essential for effective project planning, scheduling, and
resource allocation. Conventional estimation approaches such as expert judgment and algorithm-based models
are often affected by human bias and rigid assumptions. This paper presents a machine-learning driven effort
estimation framework based on the Extreme Learning Machine (ELM). The proposed framework uses historical
project data from the COCOMO-81 repository and models the relationship between project attributes and actual
development effort. ELM is implemented and compared with Linear Regression, K-Nearest Neighbour, Support
Vector Machine, and Multilayer Perceptron models. Standard error-based performance indicators, including
MAE, MSE, RMSE, and MMRE, are employed for quantitative evaluation. In addition, statistical significance of
results is verified using Shapiro—Wilk and Wilcoxon signed-rank tests. Experimental observations confirm that the
ELM model delivers superior predictive accuracy with significantly lower training time, demonstrating its
suitability for practical software project management environments.

Keywords: Software effort estimation, extreme learning machine, COCOMO-81, machine learning, project

analytics.

1. Introduction

Accurate prediction of software development effort
plays a vital role in project success. Under-
estimation often leads to schedule overruns and cost
escalation, whereas  over-estimation  causes
inefficient utilization of organisational resources.
Traditional estimation techniques, including expert
judgment and parametric models such as
COCOMO, are widely adopted but remain limited
by subjectivity, calibration complexity, and inability
to adapt to evolving development practices.

Recent advances in machine learning have enabled
the development of data-driven estimation models
capable of discovering complex nonlinear
relationships  between project attributes and
development effort. Such models reduce
dependency on manual rules and allow continuous
improvement through learning from historical data.
This work focuses on the application of the Extreme
Learning Machine (ELM) for software development
effort estimation using the COCOMO-81 dataset.
The study also includes a comprehensive
comparison with commonly used regression and
neural learning techniques in order to demonstrate
the effectiveness and robustness of the proposed
framework.

2. Related Work

A wide range of machine learning approaches have
been explored for software effort estimation,

including regression models, instance-based
learning, support vector regression, and artificial
neural networks. Linear regression models are
simple and interpretable but often fail to capture
nonlinear  patterns. K-Nearest ~ Neighbour
approaches estimate effort using historical similarity
but are sensitive to noise and feature scaling.
Support ~ vector machines provide  good
generalization but become computationally
expensive for larger datasets. Multilayer neural
networks offer strong modeling capacity but require
careful hyper-parameter tuning and long training
time.

Recent studies highlight that fast-learning neural
models can significantly improve training efficiency
while maintaining competitive accuracy. Extreme
Learning Machine has emerged as a promising
alternative due to its analytical solution for output
weights and absence of iterative training procedures.
3. Problem Definition and Objectives

Accurate effort estimation is difficult because early
project data are incomplete and development
environments vary significantly. Existing estimation
practices fail to adapt automatically when new
project data become available.

The objectives of this work are:

to design an automated effort estimation system
using ELM,
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to evaluate the predictive performance of ELM e to develop a lightweight and reproducible

against established machine learning models, framework suitable for academic and industrial
to validate prediction reliability using statistical usage.
tests, and
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The proposed architecture consists of five major
functional modules:

data acquisition from the COCOMO-81 dataset,
data preprocessing and normalization,

feature selection and dataset partitioning,

model training and prediction, and

performance evaluation and visualization.

This modular design allows easy replacement or
extension of individual learning models.

5. Dataset Description and Pre-processing

The COCOMO-81 dataset is employed as the
experimental benchmark. Each record contains
project characteristics and the corresponding actual
development effort measured in person-months. In
this implementation, the Lines of Code (LOC)
attribute is used as the primary independent feature,
while actual effort serves as the target variable.
Missing values are removed before processing.
Min-Max normalization is applied to scale the
feature values. The dataset is split into training and
testing subsets using a 67:33 ratio in order to ensure
consistent comparison across models.

6. Machine Learning Models

Five supervised learning models are implemented:
Extreme Learning Machine,

Linear Regression,

K-Nearest Neighbour regression,

Support Vector Regression, and

Multilayer Perceptron.

The ELM model employs a single hidden layer with
randomly initialized weights and sigmoid activation.
Output weights are computed analytically using the
Moore—Penrose pseudoinverse, eliminating the need
for iterative backpropagation.

7. Extreme Learning Machine Formulation
ELM is formulated as a single hidden-layer
feedforward network. Let Xdenote the normalized
input matrix and Trepresent the target output. The
hidden layer output matrix His computed using
randomly assigned input weights and biases. The
output weight vector fis obtained by solving a linear
least-squares problem using the pseudoinverse of H.
This enables extremely fast learning while
maintaining good generalization capability.

8. UML-Based System Design

8.1 Use Case Representation
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The use case model describes interactions between
the user and the estimation system, including dataset
loading, model training, prediction and result
visualization.

9. Implementation Details

The system is implemented using Python and
executed in the Jupyter Notebook environment. Data
manipulation is performed using NumPy and
Pandas, while Scikit-learn is used for implementing
regression models.  Statistical validation is
conducted using SciPy, and result visualization is
carried out using Matplotlib.

The ELM model is implemented from scratch to
enable full control over network configuration and
analytical weight computation.

10. Experimental Setup

All models are trained and tested under identical
preprocessing and dataset splits to ensure fairness.
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Performance is evaluated using the following
metrics:

Mean Absolute Error,

Mean Squared Error,

Root Mean Squared Error, and

Mean Magnitude of Relative Error.

In addition, Shapiro—Wilk testing is performed to
verify the normality of residuals, and the Wilcoxon
signed-rank test is applied to assess statistical
significance between ELM and competing models.
11. Results and Analysis

30 Comparative Analysis of Root Mean Squared Ermr (RMSE) Across Machine Learning Models for Software Effort
Estimation
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The experimental results show that the ELM model
consistently achieves the lowest error values across
MAE, MSE, RMSE and MMRE. The training time
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required by ELM is significantly smaller when
compared with the multilayer perceptron model.
The Shapiro—Wilk test confirms that the prediction
errors of the ELM model follow a normal
distribution. Furthermore, Wilcoxon signed-rank
tests demonstrate statistically  significant
improvement of ELM over the competing models.
12. Discussion

The superior performance of ELM can be attributed
to its analytical learning mechanism, which avoids
local minima and reduces overfitting for small and
medium-sized datasets. The simplicity of network
configuration also makes ELM easier to deploy in
real project environments where rapid retraining is
often required.

Although only the LOC feature is considered in the
present study, the results indicate that even a single
well-selected attribute can provide meaningful
estimation accuracy when combined with an
efficient learning model.

13. Testing and Validation

The framework is validated through unit testing of
individual modules, integration testing of the
complete processing pipeline, and system-level
testing using real dataset inputs. All evaluation
modules, visualization routines and statistical
analysis functions operated correctly during
repeated test runs.

Acceptance testing confirms that the system meets

all functional requirements, including dataset
loading, prediction generation and metric
visualization.

14. Limitations

The current implementation uses only one predictor
attribute from the COCOMO-81 dataset. The system
estimates only development effort and does not
address schedule, cost or risk prediction. In addition,
the dataset does not fully represent modern agile
development practices.

15. Future Work

Future research directions include:

incorporation of multiple COCOMO cost drivers
and development modes,

application of feature selection techniques such as
PCA and RFE,

optimization of ELM hyper-parameters using meta-
heuristic algorithms,

development of hybrid ensemble models, and
deployment of the estimator as a web-based real-
time prediction tool.

16. Conclusion

This paper presented a machine-learning based
framework for software development effort
estimation using the Extreme Learning Machine. A
comparative evaluation with Linear Regression, K-
Nearest Neighbour, Support Vector Machine and
Multilayer Perceptron models demonstrates that

147



ISSN 2277-2685
IJESR/Jan-Mar. 2026/ Vol-16/Issue-1/144-149

Dusakanti Harshitha / International Journal of Engineering & Science Research

1]

2]

131

ELM offers improved predictive accuracy and
substantially reduced training time. Statistical
validation confirms the reliability of the obtained
results. The proposed framework provides a
lightweight and scalable decision-support tool that
can assist project managers in accurate planning and
resource allocation.
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