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Abstract 

The distribution of prime numbers lies at the heart of analytic number theory. The Prime Number Theorem 

(PNT) gives the first-order asymptotic behaviour of the prime-counting function (\pi(x)), while the finer 

structure of the primes appears to be governed by the zeros of the Riemann zeta function (\zeta(s)). The 

Riemann Hypothesis (RH), asserting that all nontrivial zeros of (\zeta(s)) lie on the critical line 

(\Re(s)=\tfrac12), would yield near–optimal error terms in the PNT and far-reaching consequences for the 

distribution of primes in short intervals, arithmetic progressions, and many other problems. 

This paper reviews the classical framework connecting primes and zeta zeros via explicit formulas and 

discusses the role of zero-free regions and zero-density estimates. It then surveys selected recent advances 

connected—directly or indirectly—to RH: improved explicit zero-free regions, refinements in the proportion 

of zeros known to lie on the critical line, results on the pair correlation of zeros and its implications, 

developments around the de Bruijn–Newman constant, and progress on bounded gaps between primes. While 

a proof of RH remains elusive, these developments significantly sharpen our understanding of both prime 

distribution and the landscape of zeta zeros, suggesting promising directions for future research. 
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1. Introduction 

Prime numbers are the multiplicative “atoms” of the integers, yet their distribution along the number line is 

highly irregular. Let (\pi(x)) denote the number of primes (p \le x). Gauss and Legendre conjectured at the 

end of the 18th century that 

[ 

\pi(x) \sim \frac{x}{\log x}, 

] 

suggesting that the “density” of primes near (x) is about ((\log x)^{-1}). This is the content of the Prime 

Number Theorem (PNT), proved independently by Hadamard and de la Vallée Poussin in 1896 using 

complex analysis and properties of the Riemann zeta function.  

The central analytic object is Riemann’s zeta function 

[ 

\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \qquad \Re(s) > 1, 

] 

which extends meromorphically to (\mathbb{C}) with a simple pole at (s=1) and satisfies a functional 

equation relating (\zeta(s)) and (\zeta(1-s)). Riemann’s 1859 memoir introduced the idea that the fine 
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distribution of primes is controlled by the zeros of (\zeta(s)), especially those in the “critical strip” (0 < 

\Re(s) < 1). 

The Riemann Hypothesis (RH) states that all nontrivial zeros of (\zeta(s)) lie on the critical line 

(\Re(s)=\tfrac12). RH is one of the Clay Millennium Problems and has deep implications for number theory, 

mathematical physics, and beyond. Recent surveys emphasize that, while many approaches have been 

proposed—ranging from analytic and spectral methods to random matrix theory and quantum chaos—no 

proof is in sight.  

The purpose of this paper is twofold: 

1. To review the classical analytic framework connecting (\pi(x)) and the zeros of (\zeta(s)); 

2. To present a non-exhaustive overview of recent advances that sharpen our understanding of the zero 

distribution and move (even if partially or conditionally) toward RH. 

 

2. Classical Distribution of Primes 

2.1. Prime Number Theorem and error terms 

The Prime Number Theorem states that 

[ 

\pi(x) \sim \frac{x}{\log x} \quad \text{as } x \to \infty. 

] 

Equivalently, if we define Chebyshev’s function 

[ 

\psi(x) = \sum_{n \le x} \Lambda(n), 

] 

where (\Lambda(n)) is the von Mangoldt function, the PNT is equivalent to 

[ 

\psi(x) \sim x. 

] 

The classical proofs of the PNT rely on showing that (\zeta(s)) has no zeros on the line (\Re(s)=1); this zero-

free region around (s=1) ensures that (\log \zeta(s)) behaves well enough to control (\psi(x)) via complex 

analysis (Tauberian arguments, contour integration). 

A key refinement concerns the error term in the PNT, typically expressed as 

[ 

\psi(x) = x + O\big( x \exp(-c\sqrt{\log x}) \big) 

] 

for some constant (c>0), derived from classic zero-free regions (e.g., the Korobov–Vinogradov region). 

(ScienceDirect) The best known unconditional bounds still fall far short of what RH would imply, namely 

[ 

\psi(x) = x + O!\big(x^{1/2} \log^2 x\big). 

] 

2.2. Euler product and uniqueness of primes 
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The link between (\zeta(s)) and primes is encoded in Euler’s product formula for (\Re(s)>1): 

[ 

\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}, 

] 

where the product runs over primes (p). This expression encapsulates unique factorisation in (\mathbb{Z}) 

and shows that zeros of (\zeta(s)) carry information about the prime distribution. 

 

3. The Riemann Zeta Function and Riemann Hypothesis 

3.1. Analytic continuation and functional equation 

The Dirichlet series defining (\zeta(s)) converges only for (\Re(s)>1). Riemann extended (\zeta(s)) to a 

meromorphic function on (\mathbb{C}) using analytic continuation of the theta-function and introduced 

the completed zeta function 

[ 

\xi(s) = \tfrac12 s(s-1)\pi^{-s/2}\Gamma!\left(\frac{s}{2}\right)\zeta(s), 

] 

which satisfies the symmetric functional equation 

[ 

\xi(s) = \xi(1-s). 

] 

The nontrivial zeros of (\zeta(s)) coincide with the zeros of (\xi(s)) in the critical strip (0 < \Re(s) < 1).  

3.2. Statement and consequences of RH 

Riemann Hypothesis. Every nontrivial zero (\rho=\beta+i\gamma) of (\zeta(s)) satisfies (\beta=\tfrac12). 

RH has numerous equivalent formulations and consequences. A few central ones include: 

 Optimal PNT error term: RH implies 

[ 

\pi(x) = \mathrm{Li}(x) + O!\left(x^{1/2}\log x\right). 

] 

 Primes in short intervals: Under RH, primes are guaranteed in intervals ((x, x + C\sqrt{x}\log x]) 

for sufficiently large (x), for an absolute constant (C).  

 Primes in arithmetic progressions: GRH (for Dirichlet (L)-functions) yields strong uniformity in 

the distribution of primes in residue classes modulo (q). 

Comprehensive lists of equivalent statements and reformulations are available—for example in work on 

“equivalents of the Riemann Hypothesis,” where criteria involving explicit inequalities for arithmetic 

functions, growth of various Dirichlet series, and properties of entire functions have been compiled.  

 

4. Explicit Formulas and the Role of Zeta Zeros 

4.1. Von Mangoldt’s explicit formula 

A central tool is the explicit formula relating (\psi(x)) to the zeros of (\zeta(s)): 

[ 

\psi(x) = x - \sum_{\rho} \frac{x^{\rho}}{\rho} - \log(2\pi) - \tfrac12 \log!\left(1 - x^{-2}\right), 
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] 

where the sum is over nontrivial zeros (\rho) of (\zeta(s)). 

This formula can be obtained by applying contour integration and residues to (-\zeta'(s)/\zeta(s)), whose 

Dirichlet series is (\sum_{n=1}^{\infty} \Lambda(n)n^{-s}). The contributions of the zeros (\rho) appear 

explicitly, indicating that their locations dictate fluctuations of (\psi(x)) around (x). 

Under RH, the terms (x^{\rho} = x^{1/2 + i\gamma}) each have magnitude about (x^{1/2}), leading to an 

error term of roughly (O(x^{1/2}\log^2 x)). If zeros with (\Re(\rho)>\tfrac12) existed, they would produce 

larger oscillations, contradicting the conjecturally small error term. 

4.2. Zero-free regions and consequences 

Unconditional results rely on bounding how close zeros can get to the line (\Re(s)=1). A typical zero-free 

region is of the form 

[ 

\Re(s) \ge 1 - \frac{c}{(\log |t|)^{2/3}(\log\log |t|)^{1/3}} 

] 

for sufficiently large (|t|), where (s=\sigma+it). Refinements of such regions lead to improved explicit 

bounds for (\zeta(s)) and corresponding error terms in the PNT. 

Recent work continues to sharpen these explicit zero-free regions. For example, Bellotti (2024) proved new 

bounds for (|\zeta(s)|) that yield improved zero-free regions both in explicit and asymptotic forms, tightening 

the region where zeros cannot lie and hence refining estimates for prime-counting functions.  

 

5. Statistical Properties of Zeros and Random Matrix Theory 

5.1. Montgomery’s pair correlation and GUE 

In the 1970s, Montgomery studied the pair correlation of the imaginary parts of zeros 

(\rho=\tfrac12+i\gamma) and conjectured that, after suitable normalisation, their pair correlation function is 

[ 

1 - \left( \frac{\sin(\pi u)}{\pi u} \right)^2. 

] 

This is exactly the same as the pair correlation of eigenvalues of large random Hermitian matrices from the 

Gaussian Unitary Ensemble (GUE) in random matrix theory.  

Odlyzko’s large-scale computations of zeta zeros, reaching heights up to about (10^{20}), provided 

compelling numerical evidence that the local statistics of zeros agree with GUE predictions. This GUE 

conjecture is deeply intertwined with RH and suggests that the zeta zeros behave like a “quantum spectrum” 

of some underlying operator (Hilbert–Pólya idea). 

5.2. Proportion of zeros on the critical line 

While RH asserts that all nontrivial zeros lie on the critical line, current techniques prove only that a positive 

proportion do so. Pioneering work by Selberg and Levinson showed that a positive proportion of zeros lie on 

(\Re(s)=\tfrac12), and subsequent refinements by Conrey, Bui–Conrey–Young, Feng, and others steadily 

improved the lower bound for this proportion. 

A notable milestone is the result that more than five-twelfths of the zeros of (\zeta(s)) lie on the critical 

line, obtained using sophisticated mollifier techniques and autocorrelations of ratios of zeta functions. 
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Current surveys summarise these advances and emphasise that pushing the proportion significantly closer to 

1 appears extremely challenging with present methods.  

5.3. Pair correlation and RH implications 

Recent work has revisited Montgomery’s pair correlation conjecture (PCC) and its consequences. Goldston, 

Lee, Schettler, and Suriajaya (2025) proved that PCC implies that asymptotically 100% of zeta zeros are 

simple and, moreover, that 100% lie on the critical line—without assuming RH in their argument. Thus, a 

proof of PCC would automatically yield RH and simple zeros, linking a conjecture about local statistics of 

zeros directly to the main global conjecture. 

 

6. The de Bruijn–Newman Constant and Heat Flow Deformation 

6.1. Definition and connection to RH 

The de Bruijn–Newman constant (\Lambda) arises from a one-parameter deformation of the (\xi)-function 

via a heat flow. Roughly, there exists a real constant (\Lambda) such that for all (t \ge \Lambda), the deformed 

function has only real zeros, while for (t < \Lambda) some zeros are non-real. Riemann Hypothesis is 

equivalent to the assertion (\Lambda \le 0), while a conjecture of Newman suggested that (\Lambda \ge 0), 

i.e., RH, if true, is “barely” true.  

6.2. Recent progress 

In a major development, Rodgers and Tao (2020) proved Newman's conjecture by showing (\Lambda \ge 0), 

thus establishing that if RH holds, it does so in the most fragile possible way. Earlier work by the Polymath 

project had significantly improved upper bounds on (\Lambda). 

These results do not prove RH but refine the “phase space” in which potential proofs or counterexamples 

must live. In particular, they show that one cannot hope to prove a stronger statement like (\Lambda < 0); 

any eventual proof of RH must be compatible with (\Lambda \ge 0). 

 

7. Recent Advances on Zero-Free Regions and Bounds for (\zeta(s)) 

Improving explicit bounds for (\zeta(s)) in the critical strip and near the line (\Re(s)=1) has both theoretical 

and computational importance. Such bounds are crucial in: 

 verifications of RH up to high heights; 

 explicit estimates of (\pi(x)) and related functions; 

 zero-free region improvements. 

Bellotti (2024) provided new explicit bounds and showed that (\zeta(s)) has no zeros in a region of the form 

[ 

\Re(s) \ge 1 - \frac{c}{(\log t)^{2/3} (\log\log t)^{1/3}} 

] 

for sufficiently large (t), with improved explicit constants and asymptotics. These refinements feed back 

into tighter bounds in explicit versions of the PNT and related inequalities. 

Parallel developments continue in the study of extreme values of (|\zeta(\tfrac12+it)|), using methods such as 

Soundararajan’s “resonance” approach, which explores how large and small the zeta function can be along 

the critical line. While not directly proving RH, such results test the predictions of random matrix theory and 

inform conjectures about the distribution of values of (\zeta(s)). 
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8. Distribution of Primes and Bounded Gaps 

8.1. From GPY to Zhang, Maynard, Tao, and Polymath8 

A landmark achievement in the distribution of primes was the breakthrough on bounded gaps between 

primes. Building on the Goldston–Pintz–Yıldırım (GPY) method, Yitang Zhang (2013) showed that there 

exist infinitely many pairs of consecutive primes whose difference is bounded by 70 million. This was the 

first finite bound on 

[ 

H_1 = \liminf_{n\to\infty} (p_{n+1} - p_n), 

] 

where (p_n) is the (n)-th prime. 

Shortly after, the collaborative Polymath8 project and work by Maynard and Tao refined the techniques and 

reduced this bound dramatically. The Polymath8 project eventually showed that (H_1 \le 246), while 

Maynard’s new sieve methods showed that (H_m) is finite for any fixed (m), meaning there are bounded 

intervals containing arbitrarily many primes.  

While these results are not conditional on RH, their proofs rely on deep estimates for primes in arithmetic 

progressions and distributional results (Bombieri–Vinogradov type theorems). Strengthening these 

distribution results—e.g., up to larger moduli—often hinges on techniques related to zero-density estimates 

for (L)-functions, and conditional improvements under GRH or related conjectures would lead to even 

smaller bounds for prime gaps. 

8.2. RH and primes in short intervals 

The explicit formula suggests a strong interplay between the vertical distribution of zeros and primes in short 

intervals. Under RH, more precise results about the variance of (\pi(x+h)-\pi(x)) for (h) in a given range are 

expected, and conjectures guided by random matrix theory predict, for example, Poisson-type behaviour of 

primes in suitably scaled intervals.  

Although unconditional results remain far from these conjectures, progress in understanding the zero 

distribution—particularly via pair correlation and random matrix models—gives a conceptual framework for 

why primes should exhibit such “pseudo–random” patterns. 

 

9. Computational Verification and Height of Zeros 

Extensive computations have verified that the first many trillions of zeta zeros lie on the critical line. Odlyzko 

and collaborators developed fast algorithms (based on the Riemann–Siegel formula and FFT techniques) to 

compute (\zeta(\tfrac12+it)) and locate zeros at enormous heights, providing detailed data that strongly 

supports both RH and GUE-type statistics for zeros.  

These computations: 

 bolster confidence in RH; 

 test numerical consequences of conjectures about correlations of zeros; 

 supply data used to verify explicit bounds (e.g., in locating primes up to explicit ranges). 

While numerical evidence cannot prove RH, it significantly constrains potential counterexamples (e.g., no 

low-lying zero off the critical line exists up to the verified height). 
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10. Recent Surveys and New Approaches 

Several recent surveys synthesize classical and contemporary work on RH and related questions. Spigler 

(2024, 2025) presents a modern overview of RH, emphasising attempts using: 

 analytic techniques (zero-free regions, explicit formulas); 

 spectral and operator-theoretic ideas (Hilbert–Pólya, Selberg trace formula analogies); 

 connections to random matrix theory and quantum chaos; 

 physical and dynamical-systems inspired models.  

Other contemporary expositions focus on equivalences of RH, the structure of L-functions, and the role of 

automorphic forms, as in the broader framework of the Langlands program. These perspectives increasingly 

view RH not as an isolated problem but as part of a rich web of conjectures about L-functions, symmetries, 

and underlying geometric and spectral structures. 

 

11. Open Problems and Future Directions 

Key open directions related to the distribution of primes and RH include: 

1. Proving RH or a suitable surrogate: 

o Any proof must respect the constraint (\Lambda \ge 0) for the de Bruijn–Newman constant.  

o Approaches via random matrix theory and spectral interpretations remain conceptually 

attractive but technically underdeveloped. 

2. Improving zero-free regions and zero-density estimates: 

o Even modest improvements in explicit zero-free regions can yield better error terms in the 

PNT and stronger results for primes in arithmetic progressions.  

3. Proportion of zeros on the critical line: 

o Pushing the known proportion above current bounds (e.g., five-twelfths) would represent 

a significant breakthrough in our understanding of the critical line.  

4. Pair correlation, PCC, and higher correlations: 

o Proving Montgomery’s pair correlation conjecture (PCC) would, via recent results, 

essentially imply that “almost all” zeros are simple and lie on the critical line, hence RH.  

5. Primes in short intervals and arithmetic progressions: 

o Unconditional results still lag behind conjectures motivated by RH and random matrix 

theory. Conditional results under GRH or related hypotheses show what could be 

achievable with a full zero-distribution theory. 

6. Generalised Riemann Hypothesis (GRH) and L-functions: 

o Extending methods and intuition from (\zeta(s)) to general L-functions (Dirichlet, modular, 

automorphic) is crucial for applications across number theory, including equidistribution, 

modular forms, and arithmetic geometry.  

 

12. Conclusion 

The distribution of prime numbers is deeply entangled with the analytic behaviour of the Riemann zeta 

function and its zeros. Classical results, culminating in the Prime Number Theorem and its refinements, 

already reveal the power of complex analysis in understanding arithmetic. The Riemann Hypothesis promises 
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an even more precise picture, offering optimal error terms and strong control of primes in short intervals and 

progressions. 

Recent decades have witnessed substantial progress in areas tightly linked to RH: improved zero-free regions, 

larger proportions of zeros proven to lie on the critical line, sharp statistical conjectures based on random 

matrix theory, deep results on the de Bruijn–Newman constant, and spectacular advances in the distribution 

of primes such as bounded gaps. These developments do not prove RH, but they steadily refine the analytic 

landscape and clarify what a proof (or disproof) would have to look like. 

In this sense, progress toward RH is not merely about a single yes/no answer; it continues to enrich analytic 

number theory, deepen our understanding of primes, and forge unexpected connections with physics, 

dynamics, and geometry. The interplay between primes and zeta zeros—encoded in explicit formulas, 

random-matrix statistics, and spectral conjectures—remains one of the most fertile and fascinating areas of 

contemporary mathematics. 
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