

Performance Assessment Of Airflow System In Indian Underground Metal Mines

Veerappa Savakar¹, Ashit Datta², Patitapaban Sahu³, Purnima Srivastava⁴

Research Scholar, Department of Mining, Bhagwant University, Ajmer¹

Guide, Department of Environmental Science, Bhagwant University, Ajmer²

External Guide, Department of Mining Engineering, ISM, Dhanbad³

Research Cell, Department of Mining, Bhagwant University, Ajmer⁴

E-mail: veerappasavakar@gmail.com¹, ashitdutta7@gmail.com²

ABSTRACT

The assessment of airflow system performance in underground metal mines is critical for ensuring worker safety, operational efficiency, and regulatory compliance. This study evaluates the performance parameters of ventilation systems in Indian underground metal mines through systematic monitoring and analysis of airflow distribution, ventilation effectiveness, and energy consumption patterns. The primary objectives include measuring airflow velocity at critical locations, assessing ventilation efficiency ratios, analyzing pressure differentials across the network, and evaluating energy consumption patterns of main fans. A mixed-method approach was employed involving field measurements at selected underground metal mine sites, computational fluid dynamics simulation, and comparative analysis with international standards. The hypothesis posited that optimized airflow distribution could improve ventilation efficiency by 15-25% while reducing energy consumption. Results from three underground metal mine sites revealed average airflow velocities ranging from 1.8-4.5 m/s, ventilation efficiency ratios between 0.62-0.78, and significant energy savings potential of 20-31% through system optimization. Statistical analysis indicated strong correlations between airflow parameters and mine depth, with deeper sections showing 35% higher pressure losses. The study demonstrates that intelligent monitoring systems combined with adaptive control strategies can enhance safety standards while achieving substantial operational cost reductions.

Keywords: mine ventilation, airflow performance, underground metal mines, ventilation efficiency, energy optimization

1. INTRODUCTION

Underground metal mining operations in India represent a critical sector contributing significantly to the nation's mineral production and economic development. The Ministry of Mines reports that India hosts over 150 operational underground metal mines extracting copper, zinc, lead, gold, and iron ore from depths exceeding 1000 meters (Mishra & Panigrahi, 2023). As mining activities extend to greater depths and complex geological formations, the ventilation system's role becomes increasingly vital for maintaining safe working conditions and operational productivity. Mine ventilation systems serve multiple critical functions including supplying fresh air to underground workers, diluting and removing hazardous gases generated from blasting and diesel equipment, controlling temperature and humidity levels, and removing dust particles to prevent respiratory hazards. The performance of airflow systems in underground mines directly impacts worker health, operational efficiency, and energy consumption patterns. Studies indicate that ventilation-related costs constitute 30-40% of total underground mining electricity consumption, making it a significant operational expense (Wang *et al.*, 2024). In Indian underground metal mines, the challenges are compounded by tropical climatic conditions, increasing mine depths, aging infrastructure, and the need to balance safety requirements with energy efficiency. Recent incidents and safety audits by the Directorate General of Mine Safety (DGMS) have highlighted deficiencies in ventilation system performance, including inadequate airflow in working faces, excessive temperature in deep sections, and inefficient fan operations.

The rapid advancement of sensor technology, computational modeling capabilities, and artificial intelligence has created new opportunities for enhancing mine ventilation performance. Real-time monitoring systems equipped with distributed sensor networks enable continuous assessment of airflow parameters, gas concentrations, and environmental conditions throughout the mine network (Liu *et al.*, 2022). Computational Fluid Dynamics (CFD) modeling provides powerful tools for simulating complex airflow patterns and optimizing ventilation network configurations. Machine learning algorithms facilitate predictive maintenance of ventilation equipment and adaptive control strategies that respond dynamically to changing underground conditions. Despite

these technological advancements, systematic performance assessment of airflow systems in Indian underground metal mines remains limited. Most existing studies focus on coal mines, with metal mines receiving comparatively less attention in ventilation research. Furthermore, the applicability of international standards and practices to Indian mining conditions requires validation considering unique geological, operational, and climatic factors. This research gap necessitates comprehensive evaluation of ventilation system performance specifically tailored to Indian underground metal mining contexts.

This study addresses these gaps by conducting systematic performance assessment of airflow systems in representative Indian underground metal mines. The research employs integrated approaches combining field measurements, computational modeling, and data analytics to evaluate critical performance indicators including airflow distribution patterns, ventilation efficiency metrics, pressure characteristics, and energy consumption profiles. The findings aim to provide evidence-based recommendations for optimizing ventilation performance while ensuring compliance with safety standards and promoting sustainable mining practices.

2. LITERATURE REVIEW

The optimization and performance assessment of mine ventilation systems have been extensively studied globally over the past two decades, with researchers employing diverse methodological approaches and technological innovations. Zhou *et al.* (2018) investigated the influence of gas ventilation pressure on airway airflow stability in underground mines, demonstrating that pressure fluctuations significantly affect ventilation network performance. Their work established fundamental relationships between pressure gradients and airflow distribution that remain relevant for contemporary ventilation system design. Computational modeling has emerged as a powerful tool for ventilation system analysis. Baysal and Kosalay (2022) utilized Computational Fluid Dynamics to derive factors affecting airflow resistance in panel cave mines, revealing complex interactions between tunnel geometry, surface roughness, and airflow characteristics. Similarly, Park *et al.* (2020) employed ANSYS CFX software to investigate air velocity distribution, fluid ages, and temperature profiles in underground working faces, demonstrating CFD's effectiveness for optimizing duct configurations. These simulation-based approaches complement traditional empirical methods by enabling detailed analysis of airflow patterns in complex mine geometries.

Energy efficiency in mine ventilation has received increasing research attention due to rising operational costs and environmental sustainability concerns. Hati and Kumar (2023) developed a hybrid algorithm combining Adaptive Neural Fuzzy Interface Systems (ANFIS) with Genetic Algorithms (GA) for predicting energy consumption and airflow in underground ventilation systems. Their model demonstrated superior prediction accuracy compared to conventional artificial neural network approaches, achieving correlation coefficients exceeding 0.95. More recently, Wang et al. (2025) presented an integrated approach combining the Hardy Cross method with gradient boosting optimization, achieving 31.24% reduction in electricity consumption at the Jabal Sayid mine in Saudi Arabia. These studies underscore the substantial energy savings potential through intelligent ventilation management. Real-time monitoring and intelligent control systems represent another significant advancement in mine ventilation technology. Liu et al. (2024) proposed an intelligent ventilation system based on real-time sensing of airflow parameters, utilizing nodal wind pressure methods combined with Hardy-Cross iterative algorithms to predict airflow at unmeasured locations with accuracy exceeding 96%. Their system employed deep learning models trained on extensive simulation and field measurement data, demonstrating the viability of intelligent prediction for complex ventilation networks. Nikolakis et al. (2022) developed cyber-physical systems for gas concentration monitoring with adaptive ventilation control, implementing ventilation-on-demand modules that adjusted airflow based on real-time hazard assessment.

Optimization methodologies for ventilation network design have evolved from traditional trial-and-error approaches to sophisticated mathematical programming techniques. Zhou and Wang (2025) introduced advanced mixed-integer linear programming models for ventilation system optimization, successfully transforming nonlinear ventilation models into solvable linear control problems. Their approach achieved 15% power reduction in main fan operations while maintaining required airflow in demand airways. Li and Zhang (2023) applied sensitivity matrix theory to optimize branch airflow volume distribution in the Sanshandao Gold Mine, demonstrating that systematic analytical approaches can effectively balance airflow distribution across complex underground networks. Specific attention to metal mine ventilation has been provided by several researchers. Jiang et al. (2025) investigated controlled circulation ventilation in metal mines, showing that recirculation strategies could increase effective airflow volume by 26 m³/s while

reducing energy consumption by 37.6% compared to traditional ventilation methods. Temperature management in deep metal mines was addressed by Wang and Li (2022), who developed refrigeration ventilation systems achieving 5-6°C temperature reductions in working areas located at depths exceeding 1000 meters. These studies highlight the unique challenges posed by metal mining operations, including heat management, complex ore body geometries, and extended transportation distances.

Research on Indian mining contexts specifically remains relatively sparse. Dewangan *et al.* (2025) examined energy-saving strategies in Indian coal mine ventilation, demonstrating that axial fan speed reduction could achieve annual savings ranging from Rs. 368,456 to Rs. 2,337,453 depending on operational parameters. However, systematic studies evaluating airflow performance in Indian underground metal mines are notably absent from published literature. This research gap is particularly significant given India's expanding metal mining sector and the distinct operational challenges posed by tropical climatic conditions, regulatory frameworks, and resource constraints. International safety standards and best practices provide important benchmarks for ventilation system performance. The International Labour Organization (ILO) stipulates minimum airflow requirements of 6 m³/min per person, while India's Coal Mines Regulations specify not less than 6 m³/min per person or 2.5 m³/min per daily ton output, whichever is greater. Ventilation effectiveness indicators commonly employed include ventilation efficiency ratio, air utilization coefficient, and effective air volume percentage. These metrics enable quantitative assessment of how effectively supplied air reaches intended working areas.

The literature reveals several research gaps that this study addresses. First, limited empirical data exists on actual airflow performance in Indian underground metal mines under operational conditions. Second, relationships between ventilation system parameters and mine-specific factors such as depth, production rates, and geological conditions require systematic investigation in Indian contexts. Third, energy optimization opportunities specific to Indian metal mining operations need quantification considering local electricity costs, equipment availability, and operational practices. Finally, practical implementation frameworks for intelligent ventilation technologies adapted to Indian mining industry capabilities and constraints are needed. This study contributes to filling these gaps through comprehensive field-based performance assessment coupled with advanced analytical approaches.

3. OBJECTIVES

The present research aims to comprehensively evaluate the performance of airflow systems in Indian underground metal mines with the following specific objectives:

1. To measure and analyze airflow distribution patterns across different sections of underground metal mine ventilation networks, including intake airways, working faces, and return airways, establishing baseline performance parameters for Indian mining conditions.
2. To assess ventilation system efficiency through quantitative evaluation of key performance indicators including ventilation efficiency ratio, effective air volume percentage, air utilization coefficient, and pressure-volume characteristics under varying operational scenarios.
3. To determine energy consumption profiles of main ventilation fans and auxiliary ventilation equipment, identifying opportunities for energy optimization while maintaining compliance with safety standards and regulatory requirements.
4. To develop data-driven recommendations for enhancing airflow system performance through optimized network configuration, intelligent monitoring implementation, and adaptive control strategies suitable for Indian underground metal mining operations.

4. METHODOLOGY

This study employed a robust mixed-methods approach integrating field measurements, computational modeling, and statistical analysis to evaluate airflow system performance in Indian underground metal mines. A descriptive-analytical design was adopted, combining cross-sectional surveys with longitudinal monitoring to generate both quantitative metrics and qualitative insights into operational challenges and optimization opportunities. Three operational mines were selected via purposive sampling to represent typical conditions: a copper mine in Madhya Pradesh (400–850 m depth, central ventilation), a zinc-lead mine in Rajasthan (up to 1100 m, boundary ventilation), and a gold mine in Karnataka (300–650 m, auxiliary ventilation). At each site, 15–25 measurement locations were strategically identified across main intake and return airways, production stopes, development headings, and auxiliary ventilation zones. Field measurements

included airflow velocity using calibrated vane and hot-wire anemometers, differential pressure with electronic micromanometers, temperature and humidity with digital psychrometers, and gas concentrations with portable multi-gas monitors. Main fan performance parameters were monitored via supervisory control and data acquisition systems. Measurements followed established traverse protocols and were repeated across shifts to capture variability. Ventilation network performance was simulated using Ventsim and validated through field-based airway resistance coefficients, while ANSYS Fluent provided detailed computational fluid dynamics analysis at complex junctions. Data analysis included descriptive statistics, ventilation efficiency metrics, Pearson correlation to assess relationships among system variables, and multiple regression to identify significant predictors of performance, with significance evaluated at a 95% confidence level, providing a comprehensive assessment of underground mine ventilation dynamics.

5. RESULTS

The comprehensive field investigation and computational analysis across three underground metal mine sites yielded extensive quantitative data on airflow system performance parameters. The results are organized thematically addressing airflow distribution patterns, ventilation efficiency metrics, pressure characteristics, and energy consumption profiles.

Table 1: Airflow Velocity Distribution in Major Airways Across Study Sites

Airway Location	Site A (m/s)	Site B (m/s)	Site C (m/s)	Average (m/s)	Standard Deviation
Main Intake Shaft	4.5	5.2	3.8	4.50	0.70
Primary Haulage Level	3.2	3.8	2.9	3.30	0.46
Production Stopes	1.8	2.4	1.6	1.93	0.42
Development Headings	2.1	1.9	2.3	2.10	0.20
Return Airways	3.6	4.1	3.2	3.63	0.46
Auxiliary Ventilation Zones	2.5	2.8	2.2	2.50	0.30

Airflow velocity measurements presented in Table 1 reveal significant spatial variations across the ventilation network, with main intake shafts consistently exhibiting the highest velocities averaging 4.50 m/s. Production stopes demonstrated the lowest average velocities at 1.93 m/s, reflecting the challenges of delivering adequate airflow to active mining areas. Site B, operating

at the greatest depth of 1100 meters, recorded systematically higher velocities across all measurement locations compared to shallower mines, indicating the increased ventilation power required to overcome elevated resistance in deeper networks. The standard deviation values ranging from 0.20 to 0.70 m/s indicate moderate variability in airflow distribution, suggesting opportunities for improved balancing. Statistical analysis confirmed that airflow velocities in main intake shafts exceeded regulatory minimum requirements by comfortable margins, while production stopes in certain areas approached lower acceptable limits during peak production periods.

Table 2: Ventilation System Efficiency Parameters

Performance Metric	Site A	Site B	Site C	Industry Benchmark	Compliance Status
Ventilation Efficiency Ratio	0.68	0.62	0.74	0.70-0.85	Moderate
Air Utilization Coefficient	0.71	0.66	0.77	0.75-0.90	Moderate
Effective Air Volume (%)	64	58	71	70-85	Below Standard
Leakage Percentage	12	15	9	< 10	Above Acceptable
Main Fan Operating Efficiency	0.76	0.72	0.79	0.80-0.90	Moderate

The ventilation efficiency metrics presented in Table 2 indicate moderate to below-standard performance across the study sites when compared with international industry benchmarks. Ventilation efficiency ratios ranged from 0.62 to 0.74, with Site C achieving the best performance at 0.74, approaching the lower bound of industry benchmarks. Site B's efficiency ratio of 0.62 fell notably below acceptable standards, attributed to its complex multi-level network configuration and significant leakage through deteriorated ventilation controls. Air utilization coefficients followed similar patterns, with Site C demonstrating superior performance at 0.77, while Sites A and B recorded 0.71 and 0.66 respectively. The effective air volume percentages, representing the proportion of supplied air actually reaching working places, ranged from 58% to 71%, with all three sites falling short of the 70-85% benchmark range.

Table 3: Pressure Distribution and Ventilation Power Requirements

Parameter	Site A	Site B	Site C	Mean	Statistical Significance
Main Fan Total Pressure (Pa)	1850	2680	1420	1983	F=12.4, p<0.01
Equivalent Mine Resistance (Ns ² /m ⁸)	0.0145	0.0238	0.0102	0.0162	F=8.7, p<0.01

Specific Power Consumption (kW/m ³ /s)	0.42	0.58	0.35	0.45	F=6.3, p<0.05
Main Fan Motor Power (kW)	185	285	145	205	-
Annual Energy Consumption (MWh)	1620	2496	1270	1795	-
Pressure Loss per 100m Depth (Pa)	22	35	18	25	r=0.87, p<0.001

Pressure distribution analysis presented in Table 3 reveals substantial variations correlated with mine depth and network complexity. Site B, the deepest operation at 1100 meters, exhibited the highest main fan total pressure requirement of 2680 Pa, representing 45% greater pressure demand compared to the site average. This elevated pressure requirement translated directly into increased power consumption of 285 kW and annual energy consumption of 2496 MWh. Equivalent mine resistance, calculated from fan pressure-airflow characteristics, showed strong positive correlation (r equals 0.87, p less than 0.001) with mine depth, with deeper sections experiencing 35% higher specific resistance due to extended airway lengths, increased turbulence in complex junctions, and accumulated surface roughness from scaling and deterioration.

Table 4: Energy Optimization Potential and Cost Implications

Optimization Strategy	Site A Savings	Site B Savings	Site C Savings	Implementation Cost	Payback Period
Variable Speed Drive Installation	22% (360 MWh)	25% (624 MWh)	18% (229 MWh)	Rs. 1.2-1.8 million	2.1-2.8 years
Ventilation Network Optimization	12% (194 MWh)	15% (374 MWh)	10% (127 MWh)	Rs. 0.8-1.5 million	3.5-4.2 years
Leakage Control Enhancement	8% (130 MWh)	11% (275 MWh)	6% (76 MWh)	Rs. 0.4-0.7 million	2.8-3.5 years
Ventilation-on-Demand Systems	18% (291 MWh)	20% (499 MWh)	15% (191 MWh)	Rs. 2.5-3.5 million	3.8-4.5 years
Combined Optimization	31% (502 MWh)	35% (873 MWh)	27% (343 MWh)	Rs. 3.8-5.2 million	2.5-3.2 years

Energy optimization analysis presented in Table 4 quantifies substantial saving opportunities through systematic improvements across multiple intervention strategies. Variable speed drive installation emerged as the single most impactful optimization measure, offering energy savings potential of 18-25% across the study sites. At Site B, implementing variable frequency drives on main ventilation fans could reduce annual consumption by 624 MWh, equivalent to Rs. 3.7 million

in electricity cost savings at average industrial tariff rates of Rs. 6 per kWh. The relatively modest implementation cost of Rs. 1.2-1.8 million yields attractive payback periods of 2.1-2.8 years, making this intervention economically compelling.

6. DISCUSSION

The performance assessment results reveal both strengths and significant improvement opportunities in Indian underground metal mine ventilation systems. The observed ventilation efficiency ratios of 0.62-0.74 fall within the moderate range but remain below international best practices of 0.80-0.85 reported in advanced mining jurisdictions such as Australia and Canada (Watson & Marshall, 2018). This performance gap can be attributed to multiple factors including aging infrastructure in some mine sections, suboptimal network design in mines that have expanded incrementally without comprehensive ventilation planning, and inadequate maintenance of ventilation control devices resulting in excessive leakage. The strong correlation between mine depth and pressure requirements validates established theoretical relationships while providing quantitative parameters specific to Indian underground metal mining contexts. The observed pressure loss of 25 Pa per 100 meters of depth aligns reasonably with published values for similar mine types, though Site B's elevated loss of 35 Pa per 100m indicates that infrastructure deterioration and undersized airways significantly compound depth-related resistance.

Airflow distribution patterns identified in this study reveal systematic deficiencies in air delivery to production stopes, where average velocities of 1.93 m/s approach minimum acceptable thresholds. While main intake and return airways maintained adequate velocities exceeding 3.6 m/s, the substantial velocity reduction between primary haulage levels and production stopes indicates significant resistance in branch connections and inadequate auxiliary ventilation provisions. The leakage percentages of 9-15% documented in this study substantially exceed the less than 10% benchmark, representing a critical inefficiency that simultaneously compromises safety and wastes energy. At Site B's total fan power consumption of 285 kW, the 15% leakage represents approximately 43 kW of wasted power, equivalent to Rs. 2.3 million annually in unnecessary electricity costs. The energy optimization potential quantified in this study, ranging from 27-35% through combined interventions, aligns with emerging international research on mine ventilation efficiency. Wang *et al.* (2025) reported 31.24% energy reduction through Hardy

Cross method optimization combined with gradient boosting algorithms, while Dewangan et al. (2025) demonstrated 30-97% savings potential through variable speed fan control in Indian coal mines. Variable speed drive technology emerged as the single most impactful optimization measure. The ability to modulate airflow based on actual ventilation requirements rather than designing for worst-case scenarios enables substantial energy savings while maintaining safety compliance. In Indian mining contexts, where electricity tariffs have increased by over 40% in the past decade and represent a major operational cost component, the business case for variable speed drive implementation is particularly compelling.

The implementation of intelligent ventilation systems, incorporating real-time monitoring and adaptive control, represents the next frontier in mine ventilation optimization. The technologies demonstrated by Liu et al. (2024) and Nikolakis et al. (2022), utilizing distributed sensor networks, machine learning algorithms, and automated control systems, could address many of the deficiencies identified in this study. Real-time monitoring would enable immediate detection of leakage development, equipment degradation, and ventilation imbalances, facilitating proactive maintenance interventions. Adaptive control algorithms could dynamically adjust airflow distribution to match production activity patterns, worker locations, and environmental conditions, optimizing both safety and energy efficiency.

7. CONCLUSION

This comprehensive performance assessment of airflow systems in Indian underground metal mines has provided quantitative evidence of moderate to below-standard performance in several critical metrics while identifying substantial opportunities for improvement. The key findings reveal average airflow velocities ranging from 1.8-4.5 m/s across different airway locations, ventilation efficiency ratios of 0.62-0.74 falling short of international benchmarks, and leakage percentages of 9-15% exceeding acceptable standards. Energy consumption analysis demonstrates that optimization interventions could achieve 27-35% reductions in ventilation power requirements through combined implementation of variable speed drives, network optimization, leakage control, and intelligent monitoring systems. The strong correlation between mine depth and ventilation power requirements emphasizes the escalating challenges as Indian metal mines extend to greater depths exceeding 1000 meters. The economic analysis reveals that most

optimization interventions demonstrate attractive payback periods of 2-4 years, making them financially compelling investments for mine operators. Based on these findings, several recommendations are proposed including systematic leakage control programs, variable speed drive adoption, comprehensive ventilation network optimization, intelligent monitoring systems implementation, and capacity building programs to enhance technical expertise in ventilation engineering. The transition toward intelligent, adaptive ventilation systems represents a strategic imperative for the Indian underground metal mining sector.

REFERENCES

1. Baysal, A., & Kosalay, I. (2022). Applications of Computational Fluid Dynamics for Mine Ventilation in Mineral Development. *Energies*, 15(22), 8405. <https://doi.org/10.3390/en15228405>
2. Cao, W., Li, M., & Zhang, Y. (2024). Deep reinforcement learning for dynamic airway resistance adjustment in mine ventilation networks. *International Journal of Mining Science and Technology*, 34(2), 189-203.
3. Dewangan, S., Kumar, A., & Tiwari, S. (2025). Maximizing energy savings in coal mines industrial ventilation: Strategies and analysis for power reduction. *Discover Applied Sciences*, 7(4), 282-296. <https://doi.org/10.1007/s42452-025-06989-0>
4. Dziurzynski, W., Krach, A., & Palka, T. (2017). Airflow sensitivity assessment based on underground mine ventilation systems modeling. *Energies*, 10(10), 1515-1529.
5. Gao, K., Liu, Y., & Huang, X. (2018). Modified genetic algorithm for mine ventilation network inverse problem solving. *Journal of China Coal Society*, 43(8), 2299-2306.
6. Hati, A. K. (2021). Energy efficiency improvement strategies in mine ventilation: A comprehensive review. *Journal of Sustainable Mining*, 20(3), 185-203.
7. Hati, A. K., & Kumar, S. (2023). Prediction of energy consumption and airflow in mine ventilation using hybrid ANFIS-GA algorithm. *Mining, Metallurgy & Exploration*, 40(4), 1389-1402.
8. Haitham, O., & Obaid, M. (2021). A review on underground mine ventilation system. *Journal of Mines, Metals and Fuels*, 69(2), 62-70. <https://doi.org/10.18311/jmmf/2021/27334>

9. Ihsan, K., Rahman, A., & Sasmito, A. (2024). Artificial intelligence-based ventilation on demand for underground mines: Laboratory assessment. *Mining Technology*, 133(1), 45-58.
10. Jiang, Q., Zhang, L., & Wang, P. (2025). Research on cooling and dust removal technology of circulating airflow in metal mine working face. *Processes*, 13(5), 1374. <https://doi.org/10.3390/pr13051374>
11. Jia, P., Jia, J., Song, L., Li, Z., & Li, B. (2022). Theory of RPOD adjustment of air volume for mine intelligent ventilation. *International Journal of Ventilation*, 21(4), 316-329.
12. Li, Z., Wang, K., & Zhou, B. (2019). Increasing oxygen mass fraction in air distribution for underground mine ventilation. *Mathematical Problems in Engineering*, 2019, 1-15.
13. Liu, Y., Liu, Z., Gao, K., Huang, Y., & Zhu, C. (2022). Efficient graphical algorithm of sensor distribution and air volume reconstruction for a smart mine ventilation network. *Sensors*, 22(6), 2096.
14. Liu, X., Zhang, X., Wang, L., Qu, F., & Yue, X. (2024). Research on intelligent ventilation system of metal mine based on real-time sensing airflow parameters with a global scheme. *Applied Sciences*, 14(17), 7602. <https://doi.org/10.3390/app14177602>
15. Mishra, D. P., & Panigrahi, D. C. (2023). Mine ventilation engineering and environmental control systems in underground mines. *Journal of Environmental Management*, 325, 116458.
16. Nikolakis, W., Dimopoulos, A., & Kouris, L. (2022). Cyber-physical system for monitoring gas concentrations enabling adaptive control of ventilation systems. *Sensors*, 22(18), 6845.
17. Park, J., Jo, J., & Lee, H. (2020). Numerical analysis of airflow pattern and thermal behavior in underground mine tunnel using CFD. *Tunnelling and Underground Space Technology*, 98, 103313.
18. Semin, M., & Kormshchikov, D. (2024). Application of artificial intelligence in mine ventilation: A brief review. *Frontiers in Artificial Intelligence*, 7, 1402555. <https://doi.org/10.3389/frai.2024.1402555>
19. Watson, C., & Marshall, J. (2018). Estimating underground mine ventilation friction factors from low density 3D data acquired by a moving LiDAR. *International Journal of Mining Science and Technology*, 28(4), 657-662.

20. Zhou, A., Wang, K., Wu, L., & Xiao, Y. (2018). Influence of gas ventilation pressure on the stability of airways airflow. *International Journal of Mining Science and Technology*, 28(2), 297-301.