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ABSTRACT  

The internet is in nowadays used to coordinate a 

variety of types of cybercrimes. Therefore, the 

primary subject of this study is phishing attacks. 

Phishing uses email distortion as its fundamental 

tactic. To gather the necessary data from the 

concerned parties, challenging correspondences are 

followed by mock sites. There is currently no 

complete and effective method for preventing 

phishing attacks, despite the fact that various studies 

have published their work on prevention, detection, 

and knowledge of these attacks. As a result, machine 

learning is essential in the fight against online crimes 

like phishing. The proposed study is based on the 

phishing URL-based dataset, which is a collection of 

phishing and legitimate URL features collected from 

more than 11000 website datasets. Several machine 

learning methods have been used after preprocessing 

in order prevent phishing URLs and provide user 

protection. This study utilizes several machine 

learning models like decision trees, linear 

regression, random forests, naive Bayes, gradient 

boosting classifiers, support vector classifiers, and a 

proposed hybrid LSD model that combines decision 

trees, support vector machines, and logistic 

regression with both soft and hard voting to 

effectively and accurately defend against phishing 

attacks. The proposed LSD model makes use of the 

GridSearchCV hyper parameter optimization 

technique and the canopy feature selection technique 

with cross fold validation.  

Keywords: Phishing, LSD Model, GridSearchCV, 

Canopy Feature Selection.  

 

1-INTRODUCTION 

The speed at which internet technologies have 

advanced is both a welcome benefit and a welcomed 

threat to the digital landscape. Phishing is one of the 

most well-known cyber threats today and is 

understood as misleading malicious actors 

impersonating legitimate services or individuals to 

extract personal sensitive data, such as usernames, 

passwords or financial details. Phishing generally 

works through emails and fake websites designed to 

trick individuals into entering their personal 

information. Although there are multiple techniques 

available for detection including blacklists and 

heuristic based filters, phishing detection and the 

practical issue of protecting users continues to be a 

burden due to its evolving nature and rapid 

appearance of zero-day attacks. Since traditional 

detection systems can be limited in their abilities, I 

will employ a smarter and more adaptive approach 

by using hybrid machine learning approaches. 

Starting with a URL based phishing dataset with over 

11,000 records, I will assess the structure and 

semantic patterns of web links and classify them as 

being either phishing or legitimate. The model will 

be generated using supervised training models such 

as Decision Trees, Random Forest, Support Vector 

Machines, Naive Bayes, Gradient Boosting, and 

Logistic Regression. Most importantly, will be an 

ensemble model called Hybrid LSD which combines 

logistic regression, an SVM, and Decision Trees 

together for predictions using both soft and hard 

voting methods.  

 



. ISSN 2277-2685 

IJESR/June. 2025/ Vol-15/Issue-3s/70-81 

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research 

 

71 
 

  

2-LITERATURE REVIEW 

• Phishing Detection Leveraging Machine Learning 

and Deep Learning[1]:  

Authors: Dinil Mon Divakaran et al.  

Phishing remains a serious cybersecurity issue, 

usually deceiving people into revealing sensitive 

information like login credentials or bank account 

details. This research investigates how cutting-edge 

technologies—namely machine learning and deep 

learning—coupled with the strength of big data, can 

be utilized to detect and counter phishing attacks. By 

examining high levels of online activity and distilling 

patterns, these smart systems can learn to identify 

suspicious activity and deceiving content, providing 

a proactive solution to protecting users from online 

fraud.  

• Cyber Security: The Lifeline of Information and 

Information Technology[2]:  

Authors: Kameshwar Prasad and Deepak Rawat.  

With the worldwide boom in digital connectivity and 

the mass adoption of mobile and smart technologies, 

maintaining cybersecurity has never been more 

important. This book gives a thorough overview of 

the new security threats from modern technological 

environments, such as IoT devices, smart 

infrastructure, and the transition from 4G to 5G 

networks. It also examines how emerging 

technologies such as blockchain and artificial 

intelligence can be used to help develop safer and 

more intelligent digital landscapes. As an invaluable 

guidebook, the book provides real-world insights for 

both researchers and professionals who want to learn 

about and deal with the intricacy of today's cyber 

threats.  

• An Analysis of Phishing Blacklists: Google Safe 

Browsing, OpenPhish, PhishTank[3]:  

Authors: S. Bell and P. Komisarczuk  

This research performs a thorough examination of 

three popular phishing blacklists—Google Safe 

Browsing, OpenPhish, and PhishTank—during the 

75-day monitoring period. The study identifies how 

each site handles identification and delisting of 

malicious URLs and finds that phishing websites 

typically have short existences. Surprisingly, some 

URLs were discovered to reappear soon after 

delisting, which sparks worries about premature 

delisting and repeated threats. The results also 

indicate that OpenPhish in all cases flagged for 

threats sooner than PhishTank, despite having a 

smaller total list. There was a significant overlap, 

with roughly 12% of the URLs found on both 

OpenPhish and PhishTank, and OpenPhish flagging 

more than 90% of the shared URLs first. The 

findings reinforce the necessity for regular updates 

and better management of blacklist systems to 

improve user security against rapidly evolving 

phishing scams.  

• Physical Attributes Significant in Preserving the 

Social Sustainability of the Traditional Malay 

Settlement[4]:  

      Authors: Nor Zalina Harun, Nor Jariah 

Jaffar, and Patricia S. J. Kassim  

Traditional settlements are places where both the 

built environment and inhabitants still exhibit long 

lasting cultural practices and traditional skills. 

Nevertheless, the urban growth forces and 

modernization are starting to transform these 

heritage areas, particularly in Malaysia. This study 

seeks to determine the physical features that advance 

social cohesion and cultural continuity in historic 

Malay settlements. Using a qualitative research 

approach, the study examined settlements in Kuala 

Terengganu and determined three significant 

features that advance social sustainability: street 

pattern, property boundaries, and common open 

spaces. These aspects were discovered to be crucial 

in promoting community interaction and maintaining 

cultural identity. The research highlights the value of 
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careful planning and spatial arrangement in making 

certain that traditional communities are able to deal 

with contemporary stresses without fraying their 

social fabric.  

• Exploring a robust Machine Learning Classifier for 

detecting phishing domains using SSL 

certificates[5]:  

     Authors: Akanchha Akanchha  

Due to the phishing sites appearing genuine to users, 

detecting them is a challenging task. The SSL 

certificate that is generally used to secure and encrypt 

the communication, can also be generated for the 

phishing sites. Phishing websites continue to be a 

difficult challenge to identify, as they are made to 

look legitimate to innocent users. One of the 

underhand methods is the utilization of SSL 

certificates, which people often equate with secure 

and trusted sites, but malicious players can now also 

acquire them for phishing websites. This misuse of 

HTTPS can make users believe in fraudulent sites 

simply because they see a padlock icon or a secure 

connection symbol in the browser. This research 

explores how phishing websites exploit SSL 

certificates and looks at the key certificate attributes 

that can help distinguish between genuine and fake 

domains. To address this issue, a detection system 

was developed that utilizes machine learning 

algorithms to analyze SSL certificate data. Amongst 

the models tested, the choice of decision tree 

algorithm was made for its interpretability and robust 

performance. The algorithm produces a set of 

decision rules to classify websites as legitimate or 

phishing based on patterns in their SSL certificate 

features.The system was proved to be highly 

accurate, classifying nearly 97% of test cases 

correctly. To make this model usable in real-time, a 

Web API was also created. This API enables users to 

input a domain and obtain a classification decision 

based on the rules of the decision tree. The test results 

validate that the suggested solution is efficient and 

robust, providing a realistic approach towards 

phishing detection by taking advantage of the very 

SSL signs usually exploited for misdirecting users.  

• Modelling Hybrid Feature-Based Phishing Websites 

Detection Using Machine Learning Techniques[6]:  

      Authors: Sumitra Das Gupta et al.  

This paper proposes a hybrid model using both URL 

and hyperlink features for detecting phishing sites. 

The authors build a real-time detection system that 

operates independently of third-party tools like 

search engines. They introduce a unique dataset with 

multiple ML algorithms to validate the effectiveness 

of hybrid features in improving model predictions 

and handling zero-hour attacks  

• About Performance of NLP Transformers on URL-

based Phishing Detection for Mobile Devices[7]:  

     Authors: Hossein Shirazi et al.  

This research assesses transformer-based models, 

like BERT and RoBERTa, for phishing detection on 

mobile devices. The study uses URL-only input to 

streamline the model. The researchers analyze 

performance trade-offs between accuracy and 

computational efficiency -- ultimately choosing 

MobileBERT as an efficient option for real-time 

mobile detection, without reliance on server-side 

processing.  

• Machine Learning for Detecting Phishing 

Websites[8] :  

Authors: Amani Alswailem et al.  

This research focused on the value of browser 

extensions for phishing prevention. The research 

utilized feature selection to create a ML-based 

browser tool that could warn user in real time. The 

study discussed the growing issue developing 

phishing strategies and the need to continually 

evolve the feature set so that models remain 

functional.  
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3-SYSTEM REQUIREMENT 

SPECIFICATIONS 

Software requirements relate to specifying software 

resource requirements and pre- installation 

conditions required to a computer that can installed 

software with a minimal level of performance. These 

requirements or pre-conditions are not contained in 

the software installation package and have to be 

installed independently before the installation of the 

software.  

Operating system is arguably the first requirement 

specified when defining system requirements 

(software). Software applications may not run on 

different versions of the same line of operating 

systems, although some level of backwards 

compatibility is generally maintained. The majority 

of applications written utilizing newer features of 

Linux Kernel v2.6 do apparently not run (or compile, 

or function) properly utilizing Networks with Linux 

Kernel (2.2, or 2.4).  

Platform - A platform is a framework of some kind, 

either in hardware or software, allowing software 

applications to run. Examples of a platform include 

programming language and runtime libraries.  

APIs and drivers - Software applications severely 

dependent on utilizing special hardware devices, 

particularly high, high-end display adapters, requires 

special API(s) or new device drivers.  

PYTHON LANGUAGE  

Python is an interpreted, object-oriented, high-level 

programming language with dynamic semantics. 

Python has high-level built in data structures, 

combined with dynamic typing and dynamic 

binding, which makes it very attractive for Rapid 

Application Development, as well as for use as a 

scripting or glue language to connect existing 

components together. Python uses simple, easy to 

learn syntax emphasizing readability which reduces 

the cost of program maintenance or development. 

Python supports modules and packages, which 

encourages program modularity and code reuse. The 

Python interpreter and the extensive standard library 

are available for free in source or binary form for all 

major platforms, and can be freely distributed. Often 

programmers get attached to Python as a result of the 

increased productivity it allows. The edit-test-debug 

cycle is incredibly fast, and debugging Python 

programs is often an uneventful experience: a bug or 

bad input never causes a segmentation fault. When 

the interpreter hits an error, it raises an exception.  

The interpreter prints a stack trace when an exception 

is not caught by the program. A source level 

debugger allows for inspection of local and global 

variables, evaluation of arbitrary expressions, setting 

breakpoints, stepping through code a line at a time, 

and so on. The very fact that the source level 

debugger is written in Python speaks to the power of 

introspection in Python. However, the truth is that 

oftentimes, the fastest and simplest way to debug a 

program is to put a few print statements in the source 

code, and the fast edit-test-debug cycle makes this a 

very effective approach.  

Python is a dynamic, high-level, free open-source, 

interpreted programming language that supports 

procedural-oriented programming as well as object-

oriented programming. In Python, we don’t need to 

explicitly state the type of variable because it is 

dynamically typed language.  

 

HARDWARE REQUIREMENTS  

• Processing power – The processing power of the 

central processing unit (CPU) is the first system 

requirement for any software. Most software that 

runs on x86 architecture defines processing power as 

the model and clock speed of the CPU. Many other 

characteristics of a CPU, such as bus speed, cache, 

and MIPS, influence its speed and processing power 

and are seldom discussed. This definition of power is 
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often not accurate, because similar clock speed AMD 

Athlon and Intel Pentium CPUs often have 

significantly different throughput speeds. Intel 

Pentium CPUs have been very popular and will often 

come up in this category.  

• Memory – All software, when running, is in the 

random access memory (RAM) of a computer. 

Memory requirement definition includes the 

requirements of the application, operating system, 

supporting software and files, as well as any other 

concurrent processes running on a multi-tasking 

computer system that can contribute to the hardware 

specification for the additional software.  

• Secondary storage – Hard-disk requirements, in 

relation to the secondary storage of the software, will 

vary depending on the size of the software 

installation and the amount of temporary files it 

creates and manages while installing it or while it 

runs, as well as any swap space (if RAM is 

insufficient).  

 

NON-FUNCTIONAL REQUIREMENTS  

• Usability  

The interface should be user-friendly and intuitive 

for everyone, including those without much technical 

expertise.  

• Serviceability  

The system should include tools to diagnose 

problems (misclassifications, loading errors, etc.) 

and logging to allow for debugging and maintenance.  

• Manageability  

The model and web application should be easy to 

manage, update, and deploy, with clear delineation 

of responsibilities across front-end, back-end, and 

ML logic.  

• Recoverability  

The system should be able to recover operations 

smoothly after a failure or crash, without losing user 

data or model accuracy.  

• Security  

The system must provide secure user authentication 

and at the same time secure user inputs against all 

malicious entry. The system must protect itself 

against SQL Injection, URL-based attacks, and 

preventing unauthorized access to model predictions.  

• Data Integrity  

The input data, the training data, and the output data 

from the model must be consistent and unmodified 

throughout all the phases of the system lifecycle.  

• Capacity  

The system should be able to support a reasonable 

volume of simultaneous URL submissions and user 

logins, without causing performance degradation.  

  

4-SYSTEM DESIGN 

  

  

  



. ISSN 2277-2685 

IJESR/June. 2025/ Vol-15/Issue-3s/70-81 

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research 

 

75 
 

  

 

  

Fig 1: System architecture 

 

 

 

 DATA FLOW DIAGRAM  

 The DFD is also called as bubble chart. It is a simple 

graphical formalism that can be used to represent a 

system in terms of input data to the system, various 

processing carried out on this data, and the output 

data is generated by this system.  

• The data flow diagram (DFD) is one of the most 

important modeling tools. It is used to model the 

system components. These components are the 

system process, the data used by the process, an 

external entity that interacts with the system and the 

information flows in the system.  

• DFD shows how the information moves through the 

system and how it is modified by a series of 

transformations. It is a graphical technique that 

depicts information flow and the transformations that 

are applied as data moves from input to output.  

• DFD is also known as bubble chart. A DFD may be 

used to represent a system at any level of abstraction. 
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DFD may be partitioned into levels that represent 

increasing information flow and functional detail.  

 

Fig 2: Data Flow Diagram 

 

5-IMPLEMENTATION  

 The intended system is aimed at presenting an 

intelligent solution to phishing threat detection 

utilizing a hybrid machine learning method based on 

URL-based analysis. Using a dataset provided by 

Kaggle that is publicly available, the system employs 

several features derived from both legitimate and 

malicious URLs. For appropriate classification of 

these URLs, the system employs different machine 

learning algorithms, including Linear Regression, 

Decision Trees, Random Forests, Support Vector 

Machines, Naive Bayes, and Gradient Boosting. To 

enhance model performance further, an ensemble 

method is suggested— referred to as the LSD hybrid 

model—which makes use of Logistic Regression, 

SVM, and Decision Tree classifier decisions both 

through soft (probabilistic) and hard (majority) 

voting methods. In order to refine the configuration 

of the model to deliver optimal results with 

maximum accuracy, GridSearchCV is used to 

perform hyperparameter tuning so that the system is 

able to select the optimum parameters for each of the 

algorithms. To deploy the system, the entire system 

is built into a Flask-based web application. This web 

platform incorporates a SQLite driven user 

registration and login system for a minimal but 
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secure interface. When a user provides a URL, it is 

subject to feature extraction with the help of tools 

like BeautifulSoup and WHOIS . The extracted 

features are then passed on to the machine learning 

model, which has been trained to forecast whether 

the URL is genuine or a phishing attempt.  

 

Dataset  

In this phishing detection system, the dataset plays a 

central role and is obtained from Kaggle’s open-

source repository. It contains 11,055 website entries, 

each labeled as either legitimate or phishing. Rather 

than relying on the raw URL, the dataset represents 

each entry through a collection of over 30 numerical 

features. These features reflect various 

characteristics related to the structure of the URL, 

domain details, and behavioral indicators. Examples 

include the use of IP addresses in place of domain 

names, URL shortening services, special characters 

such as the “@” symbol, hyphenated domain 

segments, embedded iframes, domain registration 

age, and estimated web traffic. The classification 

label, referred to as the Result, assigns a value of 1 to 

phishing URLs and -1 or 0 to legitimate ones. To 

prepare the dataset for machine learning, a series of 

preprocessing steps are carried out, and a stratified 

train-test split to preserve the ratio of classes. All 

feature values are encoded numerically to facilitate 

compatibility with classification algorithms. The 

structured nature of the dataset allows for efficient 

training of various models, enabling accurate 

phishing detection purely based on URL attributes, 

without the need for inspecting the full website 

content.  

  

Feature Extraction  

Even though the dataset already has a good set of 

features, we took it a notch up by deriving some more 

information from the external tools to improve the 

model accuracy. For this we used BeautifulSoup (a 

Python library for scraping the data from the HTML 

content of the web pages). This enabled detection of 

some common red flags typical on phishing sites, 

including hidden elements, automatic redirection via 

JavaScript, and deceptive anchor tags that don’t go 

anywhere. At the same time, we conducted WHOIS 

lookups to collect valuable background information 

on each domain — such as when the domain was 

registered, who owns it and how soon it’s designed 

to expire. This information matters because phishing 

sites are usually associated with domains that are 

newly created or registered for extremely short 

periods. Once we fetched this information, we 

converted all the features to numeric values for our 

machine learning models to process efficiently. We 

did some data scrubbing by filtering out features that 

had no overwhelming value and ensured the model is 

focusing on key aspects only needed in order to make 

accurate predictions.  

  

Data Preprocessing  

Before we move on to training the machine learning 

models, we need to ensure that our dataset is in prime 

condition. This involves going through some 

necessary preprocessing to make sure that all is 

clean, consistent, and ready for analysis. We go to 

the trouble of treating any missing or incomplete data 

entries—either by filling them in with suitable values 

or by eliminating them altogether to prevent any 

skewing of our findings. Since some algorithms, like 

Support Vector Machines, can be extremely sensitive 

to the range of input features, we do feature 

normalization by applying a standardization 

technique so that all values are within a uniform 

range. We also translate the classification labels, 

which tell us whether a URL is phishing or 

legitimate, to numerical form so they can lie 

alongside our machine learning models.  



. ISSN 2277-2685 

IJESR/June. 2025/ Vol-15/Issue-3s/70-81 

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research 

 

78 
 

  

Finally, we split the dataset into training and test sets, 

typically in a 70- to-30 ratio, and use stratified 

sampling to ensure both phishing and legitimate 

examples are suitably represented in each subset. 

These preprocessing steps provide a solid foundation 

for accurate and efficient model training. A range of 

Python libraries were imported to handle different 

parts of workflow, from data processing to 

deployement. Pandas and Numpy were used for 

reading the dataset and performing data manipulation 

and numerical operations.To train and train the 

models we used scikitlearn. Flask and SQLite are 

used to deploy the system as web application.  

  

6-RESULT  

 

Fig 1: Dashboard 

This is the homepage/dashboard interface of the phishing detection system. It provides users with:  

• A welcome screen  

• Navigation options (signup/home)  

• A clear call to action to begin using the detection system  

 

Fig 2: Sign Up Page 
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Fig 3: Login page 

This Login Page acts as the gateway to the secure, authenticated portion of the phishing detection system  

  

 

Fig 4: URL input 

To deliver the main service of the application detecting phishing attempts through URL analysis using a hybrid 

machine learning approach.  

 

Fig 5: URL analysis result page 



. ISSN 2277-2685 

IJESR/June. 2025/ Vol-15/Issue-3s/70-81 

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research 

 

80 
 

  

 

 

Fig 6: URL analysis result page 

   

This page is meant to inform the user of the model’s 

classification decision and provide a strong deterrent 

against visiting malicious sites. By giving both a 

warning and an option to proceed, it maintains a 

balance between security and user control.   

  

7-CONCLUSION 

Phishing remains one of the most prevalent and 

harmful issues in the field of cybersecurity by taking 

advantage of human trust and biases in computer 

systems. In this project we approached this problem 

by developing and implementing a smart automated 

phishing detection system that employs hybrid 

machine learning. The proposed framework can 

analyze URL-based features to distinguish the 

legitimacy of a website in real-time and provide users 

with a useful defense against phishing attacks.  The 

system draws on multiple machine learning models 

(Logistic Regression, Support Vector Machine, 

Decision Tree, Random Forest, Gradient Boosting, 

and Naive Bayes) to deliver a dependable 

classification engine. Most notably, the project has 

implemented a Hybrid LSD (Logistic, SVM, 

Decision Tree) ensemble model with soft and hard 

voting techniques. The ensemble method improves 

detection reliability, while also reducing the 

probability of false positives and false negatives. In 

conclusion, this phishing detection system illustrates 

how modern machine learning can be successfully 

bundled and optimized for current end users as a 

practical defense against online threats. This thesis 

implements URL based detection, however future 

improvements could include content-based analysis 

of web pages, scraping web page behavior in real 

time, and including browser extensions for improved 

usability.  
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