
. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/70-81

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research

70

Phishing Detection System through Hybrid Machine Learning

K Shireesha, Jagini Jaishna, Siddagoni Pavani

1Associate Professor, Department Of Cse, Bhoj Reddy Engineering College For Women, India.

2,3,4,5B. Tech Students, Department Of Cse, Bhoj Reddy Engineering College For Women, India.

ABSTRACT

The internet is in nowadays used to coordinate a

variety of types of cybercrimes. Therefore, the

primary subject of this study is phishing attacks.

Phishing uses email distortion as its fundamental

tactic. To gather the necessary data from the

concerned parties, challenging correspondences are

followed by mock sites. There is currently no

complete and effective method for preventing

phishing attacks, despite the fact that various studies

have published their work on prevention, detection,

and knowledge of these attacks. As a result, machine

learning is essential in the fight against online crimes

like phishing. The proposed study is based on the

phishing URL-based dataset, which is a collection of

phishing and legitimate URL features collected from

more than 11000 website datasets. Several machine

learning methods have been used after preprocessing

in order prevent phishing URLs and provide user

protection. This study utilizes several machine

learning models like decision trees, linear

regression, random forests, naive Bayes, gradient

boosting classifiers, support vector classifiers, and a

proposed hybrid LSD model that combines decision

trees, support vector machines, and logistic

regression with both soft and hard voting to

effectively and accurately defend against phishing

attacks. The proposed LSD model makes use of the

GridSearchCV hyper parameter optimization

technique and the canopy feature selection technique

with cross fold validation.

Keywords: Phishing, LSD Model, GridSearchCV,

Canopy Feature Selection.

1-INTRODUCTION

The speed at which internet technologies have

advanced is both a welcome benefit and a welcomed

threat to the digital landscape. Phishing is one of the

most well-known cyber threats today and is

understood as misleading malicious actors

impersonating legitimate services or individuals to

extract personal sensitive data, such as usernames,

passwords or financial details. Phishing generally

works through emails and fake websites designed to

trick individuals into entering their personal

information. Although there are multiple techniques

available for detection including blacklists and

heuristic based filters, phishing detection and the

practical issue of protecting users continues to be a

burden due to its evolving nature and rapid

appearance of zero-day attacks. Since traditional

detection systems can be limited in their abilities, I

will employ a smarter and more adaptive approach

by using hybrid machine learning approaches.

Starting with a URL based phishing dataset with over

11,000 records, I will assess the structure and

semantic patterns of web links and classify them as

being either phishing or legitimate. The model will

be generated using supervised training models such

as Decision Trees, Random Forest, Support Vector

Machines, Naive Bayes, Gradient Boosting, and

Logistic Regression. Most importantly, will be an

ensemble model called Hybrid LSD which combines

logistic regression, an SVM, and Decision Trees

together for predictions using both soft and hard

voting methods.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/70-81

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research

71

2-LITERATURE REVIEW

• Phishing Detection Leveraging Machine Learning

and Deep Learning[1]:

Authors: Dinil Mon Divakaran et al.

Phishing remains a serious cybersecurity issue,

usually deceiving people into revealing sensitive

information like login credentials or bank account

details. This research investigates how cutting-edge

technologies—namely machine learning and deep

learning—coupled with the strength of big data, can

be utilized to detect and counter phishing attacks. By

examining high levels of online activity and distilling

patterns, these smart systems can learn to identify

suspicious activity and deceiving content, providing

a proactive solution to protecting users from online

fraud.

• Cyber Security: The Lifeline of Information and

Information Technology[2]:

Authors: Kameshwar Prasad and Deepak Rawat.

With the worldwide boom in digital connectivity and

the mass adoption of mobile and smart technologies,

maintaining cybersecurity has never been more

important. This book gives a thorough overview of

the new security threats from modern technological

environments, such as IoT devices, smart

infrastructure, and the transition from 4G to 5G

networks. It also examines how emerging

technologies such as blockchain and artificial

intelligence can be used to help develop safer and

more intelligent digital landscapes. As an invaluable

guidebook, the book provides real-world insights for

both researchers and professionals who want to learn

about and deal with the intricacy of today's cyber

threats.

• An Analysis of Phishing Blacklists: Google Safe

Browsing, OpenPhish, PhishTank[3]:

Authors: S. Bell and P. Komisarczuk

This research performs a thorough examination of

three popular phishing blacklists—Google Safe

Browsing, OpenPhish, and PhishTank—during the

75-day monitoring period. The study identifies how

each site handles identification and delisting of

malicious URLs and finds that phishing websites

typically have short existences. Surprisingly, some

URLs were discovered to reappear soon after

delisting, which sparks worries about premature

delisting and repeated threats. The results also

indicate that OpenPhish in all cases flagged for

threats sooner than PhishTank, despite having a

smaller total list. There was a significant overlap,

with roughly 12% of the URLs found on both

OpenPhish and PhishTank, and OpenPhish flagging

more than 90% of the shared URLs first. The

findings reinforce the necessity for regular updates

and better management of blacklist systems to

improve user security against rapidly evolving

phishing scams.

• Physical Attributes Significant in Preserving the

Social Sustainability of the Traditional Malay

Settlement[4]:

 Authors: Nor Zalina Harun, Nor Jariah

Jaffar, and Patricia S. J. Kassim

Traditional settlements are places where both the

built environment and inhabitants still exhibit long

lasting cultural practices and traditional skills.

Nevertheless, the urban growth forces and

modernization are starting to transform these

heritage areas, particularly in Malaysia. This study

seeks to determine the physical features that advance

social cohesion and cultural continuity in historic

Malay settlements. Using a qualitative research

approach, the study examined settlements in Kuala

Terengganu and determined three significant

features that advance social sustainability: street

pattern, property boundaries, and common open

spaces. These aspects were discovered to be crucial

in promoting community interaction and maintaining

cultural identity. The research highlights the value of

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/70-81

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research

72

careful planning and spatial arrangement in making

certain that traditional communities are able to deal

with contemporary stresses without fraying their

social fabric.

• Exploring a robust Machine Learning Classifier for

detecting phishing domains using SSL

certificates[5]:

 Authors: Akanchha Akanchha

Due to the phishing sites appearing genuine to users,

detecting them is a challenging task. The SSL

certificate that is generally used to secure and encrypt

the communication, can also be generated for the

phishing sites. Phishing websites continue to be a

difficult challenge to identify, as they are made to

look legitimate to innocent users. One of the

underhand methods is the utilization of SSL

certificates, which people often equate with secure

and trusted sites, but malicious players can now also

acquire them for phishing websites. This misuse of

HTTPS can make users believe in fraudulent sites

simply because they see a padlock icon or a secure

connection symbol in the browser. This research

explores how phishing websites exploit SSL

certificates and looks at the key certificate attributes

that can help distinguish between genuine and fake

domains. To address this issue, a detection system

was developed that utilizes machine learning

algorithms to analyze SSL certificate data. Amongst

the models tested, the choice of decision tree

algorithm was made for its interpretability and robust

performance. The algorithm produces a set of

decision rules to classify websites as legitimate or

phishing based on patterns in their SSL certificate

features.The system was proved to be highly

accurate, classifying nearly 97% of test cases

correctly. To make this model usable in real-time, a

Web API was also created. This API enables users to

input a domain and obtain a classification decision

based on the rules of the decision tree. The test results

validate that the suggested solution is efficient and

robust, providing a realistic approach towards

phishing detection by taking advantage of the very

SSL signs usually exploited for misdirecting users.

• Modelling Hybrid Feature-Based Phishing Websites

Detection Using Machine Learning Techniques[6]:

 Authors: Sumitra Das Gupta et al.

This paper proposes a hybrid model using both URL

and hyperlink features for detecting phishing sites.

The authors build a real-time detection system that

operates independently of third-party tools like

search engines. They introduce a unique dataset with

multiple ML algorithms to validate the effectiveness

of hybrid features in improving model predictions

and handling zero-hour attacks

• About Performance of NLP Transformers on URL-

based Phishing Detection for Mobile Devices[7]:

 Authors: Hossein Shirazi et al.

This research assesses transformer-based models,

like BERT and RoBERTa, for phishing detection on

mobile devices. The study uses URL-only input to

streamline the model. The researchers analyze

performance trade-offs between accuracy and

computational efficiency -- ultimately choosing

MobileBERT as an efficient option for real-time

mobile detection, without reliance on server-side

processing.

• Machine Learning for Detecting Phishing

Websites[8] :

Authors: Amani Alswailem et al.

This research focused on the value of browser

extensions for phishing prevention. The research

utilized feature selection to create a ML-based

browser tool that could warn user in real time. The

study discussed the growing issue developing

phishing strategies and the need to continually

evolve the feature set so that models remain

functional.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/70-81

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research

73

3-SYSTEM REQUIREMENT

SPECIFICATIONS

Software requirements relate to specifying software

resource requirements and pre- installation

conditions required to a computer that can installed

software with a minimal level of performance. These

requirements or pre-conditions are not contained in

the software installation package and have to be

installed independently before the installation of the

software.

Operating system is arguably the first requirement

specified when defining system requirements

(software). Software applications may not run on

different versions of the same line of operating

systems, although some level of backwards

compatibility is generally maintained. The majority

of applications written utilizing newer features of

Linux Kernel v2.6 do apparently not run (or compile,

or function) properly utilizing Networks with Linux

Kernel (2.2, or 2.4).

Platform - A platform is a framework of some kind,

either in hardware or software, allowing software

applications to run. Examples of a platform include

programming language and runtime libraries.

APIs and drivers - Software applications severely

dependent on utilizing special hardware devices,

particularly high, high-end display adapters, requires

special API(s) or new device drivers.

PYTHON LANGUAGE

Python is an interpreted, object-oriented, high-level

programming language with dynamic semantics.

Python has high-level built in data structures,

combined with dynamic typing and dynamic

binding, which makes it very attractive for Rapid

Application Development, as well as for use as a

scripting or glue language to connect existing

components together. Python uses simple, easy to

learn syntax emphasizing readability which reduces

the cost of program maintenance or development.

Python supports modules and packages, which

encourages program modularity and code reuse. The

Python interpreter and the extensive standard library

are available for free in source or binary form for all

major platforms, and can be freely distributed. Often

programmers get attached to Python as a result of the

increased productivity it allows. The edit-test-debug

cycle is incredibly fast, and debugging Python

programs is often an uneventful experience: a bug or

bad input never causes a segmentation fault. When

the interpreter hits an error, it raises an exception.

The interpreter prints a stack trace when an exception

is not caught by the program. A source level

debugger allows for inspection of local and global

variables, evaluation of arbitrary expressions, setting

breakpoints, stepping through code a line at a time,

and so on. The very fact that the source level

debugger is written in Python speaks to the power of

introspection in Python. However, the truth is that

oftentimes, the fastest and simplest way to debug a

program is to put a few print statements in the source

code, and the fast edit-test-debug cycle makes this a

very effective approach.

Python is a dynamic, high-level, free open-source,

interpreted programming language that supports

procedural-oriented programming as well as object-

oriented programming. In Python, we don’t need to

explicitly state the type of variable because it is

dynamically typed language.

HARDWARE REQUIREMENTS

• Processing power – The processing power of the

central processing unit (CPU) is the first system

requirement for any software. Most software that

runs on x86 architecture defines processing power as

the model and clock speed of the CPU. Many other

characteristics of a CPU, such as bus speed, cache,

and MIPS, influence its speed and processing power

and are seldom discussed. This definition of power is

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/70-81

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research

74

often not accurate, because similar clock speed AMD

Athlon and Intel Pentium CPUs often have

significantly different throughput speeds. Intel

Pentium CPUs have been very popular and will often

come up in this category.

• Memory – All software, when running, is in the

random access memory (RAM) of a computer.

Memory requirement definition includes the

requirements of the application, operating system,

supporting software and files, as well as any other

concurrent processes running on a multi-tasking

computer system that can contribute to the hardware

specification for the additional software.

• Secondary storage – Hard-disk requirements, in

relation to the secondary storage of the software, will

vary depending on the size of the software

installation and the amount of temporary files it

creates and manages while installing it or while it

runs, as well as any swap space (if RAM is

insufficient).

NON-FUNCTIONAL REQUIREMENTS

• Usability

The interface should be user-friendly and intuitive

for everyone, including those without much technical

expertise.

• Serviceability

The system should include tools to diagnose

problems (misclassifications, loading errors, etc.)

and logging to allow for debugging and maintenance.

• Manageability

The model and web application should be easy to

manage, update, and deploy, with clear delineation

of responsibilities across front-end, back-end, and

ML logic.

• Recoverability

The system should be able to recover operations

smoothly after a failure or crash, without losing user

data or model accuracy.

• Security

The system must provide secure user authentication

and at the same time secure user inputs against all

malicious entry. The system must protect itself

against SQL Injection, URL-based attacks, and

preventing unauthorized access to model predictions.

• Data Integrity

The input data, the training data, and the output data

from the model must be consistent and unmodified

throughout all the phases of the system lifecycle.

• Capacity

The system should be able to support a reasonable

volume of simultaneous URL submissions and user

logins, without causing performance degradation.

4-SYSTEM DESIGN

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/70-81

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research

75

Fig 1: System architecture

 DATA FLOW DIAGRAM

 The DFD is also called as bubble chart. It is a simple

graphical formalism that can be used to represent a

system in terms of input data to the system, various

processing carried out on this data, and the output

data is generated by this system.

• The data flow diagram (DFD) is one of the most

important modeling tools. It is used to model the

system components. These components are the

system process, the data used by the process, an

external entity that interacts with the system and the

information flows in the system.

• DFD shows how the information moves through the

system and how it is modified by a series of

transformations. It is a graphical technique that

depicts information flow and the transformations that

are applied as data moves from input to output.

• DFD is also known as bubble chart. A DFD may be

used to represent a system at any level of abstraction.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/70-81

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research

76

DFD may be partitioned into levels that represent

increasing information flow and functional detail.

Fig 2: Data Flow Diagram

5-IMPLEMENTATION

 The intended system is aimed at presenting an

intelligent solution to phishing threat detection

utilizing a hybrid machine learning method based on

URL-based analysis. Using a dataset provided by

Kaggle that is publicly available, the system employs

several features derived from both legitimate and

malicious URLs. For appropriate classification of

these URLs, the system employs different machine

learning algorithms, including Linear Regression,

Decision Trees, Random Forests, Support Vector

Machines, Naive Bayes, and Gradient Boosting. To

enhance model performance further, an ensemble

method is suggested— referred to as the LSD hybrid

model—which makes use of Logistic Regression,

SVM, and Decision Tree classifier decisions both

through soft (probabilistic) and hard (majority)

voting methods. In order to refine the configuration

of the model to deliver optimal results with

maximum accuracy, GridSearchCV is used to

perform hyperparameter tuning so that the system is

able to select the optimum parameters for each of the

algorithms. To deploy the system, the entire system

is built into a Flask-based web application. This web

platform incorporates a SQLite driven user

registration and login system for a minimal but

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/70-81

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research

77

secure interface. When a user provides a URL, it is

subject to feature extraction with the help of tools

like BeautifulSoup and WHOIS . The extracted

features are then passed on to the machine learning

model, which has been trained to forecast whether

the URL is genuine or a phishing attempt.

Dataset

In this phishing detection system, the dataset plays a

central role and is obtained from Kaggle’s open-

source repository. It contains 11,055 website entries,

each labeled as either legitimate or phishing. Rather

than relying on the raw URL, the dataset represents

each entry through a collection of over 30 numerical

features. These features reflect various

characteristics related to the structure of the URL,

domain details, and behavioral indicators. Examples

include the use of IP addresses in place of domain

names, URL shortening services, special characters

such as the “@” symbol, hyphenated domain

segments, embedded iframes, domain registration

age, and estimated web traffic. The classification

label, referred to as the Result, assigns a value of 1 to

phishing URLs and -1 or 0 to legitimate ones. To

prepare the dataset for machine learning, a series of

preprocessing steps are carried out, and a stratified

train-test split to preserve the ratio of classes. All

feature values are encoded numerically to facilitate

compatibility with classification algorithms. The

structured nature of the dataset allows for efficient

training of various models, enabling accurate

phishing detection purely based on URL attributes,

without the need for inspecting the full website

content.

Feature Extraction

Even though the dataset already has a good set of

features, we took it a notch up by deriving some more

information from the external tools to improve the

model accuracy. For this we used BeautifulSoup (a

Python library for scraping the data from the HTML

content of the web pages). This enabled detection of

some common red flags typical on phishing sites,

including hidden elements, automatic redirection via

JavaScript, and deceptive anchor tags that don’t go

anywhere. At the same time, we conducted WHOIS

lookups to collect valuable background information

on each domain — such as when the domain was

registered, who owns it and how soon it’s designed

to expire. This information matters because phishing

sites are usually associated with domains that are

newly created or registered for extremely short

periods. Once we fetched this information, we

converted all the features to numeric values for our

machine learning models to process efficiently. We

did some data scrubbing by filtering out features that

had no overwhelming value and ensured the model is

focusing on key aspects only needed in order to make

accurate predictions.

Data Preprocessing

Before we move on to training the machine learning

models, we need to ensure that our dataset is in prime

condition. This involves going through some

necessary preprocessing to make sure that all is

clean, consistent, and ready for analysis. We go to

the trouble of treating any missing or incomplete data

entries—either by filling them in with suitable values

or by eliminating them altogether to prevent any

skewing of our findings. Since some algorithms, like

Support Vector Machines, can be extremely sensitive

to the range of input features, we do feature

normalization by applying a standardization

technique so that all values are within a uniform

range. We also translate the classification labels,

which tell us whether a URL is phishing or

legitimate, to numerical form so they can lie

alongside our machine learning models.

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/70-81

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research

78

Finally, we split the dataset into training and test sets,

typically in a 70- to-30 ratio, and use stratified

sampling to ensure both phishing and legitimate

examples are suitably represented in each subset.

These preprocessing steps provide a solid foundation

for accurate and efficient model training. A range of

Python libraries were imported to handle different

parts of workflow, from data processing to

deployement. Pandas and Numpy were used for

reading the dataset and performing data manipulation

and numerical operations.To train and train the

models we used scikitlearn. Flask and SQLite are

used to deploy the system as web application.

6-RESULT

Fig 1: Dashboard

This is the homepage/dashboard interface of the phishing detection system. It provides users with:

• A welcome screen

• Navigation options (signup/home)

• A clear call to action to begin using the detection system

Fig 2: Sign Up Page

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/70-81

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research

79

Fig 3: Login page

This Login Page acts as the gateway to the secure, authenticated portion of the phishing detection system

Fig 4: URL input

To deliver the main service of the application detecting phishing attempts through URL analysis using a hybrid

machine learning approach.

Fig 5: URL analysis result page

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/70-81

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research

80

Fig 6: URL analysis result page

This page is meant to inform the user of the model’s

classification decision and provide a strong deterrent

against visiting malicious sites. By giving both a

warning and an option to proceed, it maintains a

balance between security and user control.

7-CONCLUSION

Phishing remains one of the most prevalent and

harmful issues in the field of cybersecurity by taking

advantage of human trust and biases in computer

systems. In this project we approached this problem

by developing and implementing a smart automated

phishing detection system that employs hybrid

machine learning. The proposed framework can

analyze URL-based features to distinguish the

legitimacy of a website in real-time and provide users

with a useful defense against phishing attacks. The

system draws on multiple machine learning models

(Logistic Regression, Support Vector Machine,

Decision Tree, Random Forest, Gradient Boosting,

and Naive Bayes) to deliver a dependable

classification engine. Most notably, the project has

implemented a Hybrid LSD (Logistic, SVM,

Decision Tree) ensemble model with soft and hard

voting techniques. The ensemble method improves

detection reliability, while also reducing the

probability of false positives and false negatives. In

conclusion, this phishing detection system illustrates

how modern machine learning can be successfully

bundled and optimized for current end users as a

practical defense against online threats. This thesis

implements URL based detection, however future

improvements could include content-based analysis

of web pages, scraping web page behavior in real

time, and including browser extensions for improved

usability.

REFERENCES

[1] D. M. Divakaran and A. Oest, ‘‘Phishing

detection leveraging machine learning and deep

learning: A review,’’ 2022, arXiv:2205.07411.

[2] K. Prasad and D. Rawat, “Cyber Security:

The Lifeline of Information and Communication

Technology.” Cham, Switzerland: Springer, 2020.

[3] S. Bell and P. Komisarczuk, ‘‘An analysis

of phishing blacklists: Google safe browsing,

OpenPhish, and PhishTank,’’ in Proc. Australas.

Comput. Sci. Week Multiconf. (ACSW), Melbourne,

VIC, Australia. New York, NY, USA: Association

. ISSN 2277-2685

IJESR/June. 2025/ Vol-15/Issue-3s/70-81

 Jagini Jaishna et. al., / International Journal of Engineering & Science Research

81

for Computing Machinery, 2020, pp. 1–11, Art. no.

3, doi: 10.1145/3373017.3373020.

[4] N. Z. Harun, N. Jaffar, and P. S. J. Kassim,

“Physical attributes significant in preserving the

social sustainability of the traditional Malay

settlement,” in Reframing the Vernacular: Politics,

Semiotics, and Representation, Springer, 2020, pp.

225–238.

[5] A. Akanchha, ‘‘Exploring a robust machine

learning classifier for detecting phishing domains

using SSL certificates,’’ Fac. Comput. Sci.,

Dalhousie Univ., Halifax, NS, Canada, Tech. Rep.

10222/78875, 2020.

[6] S. D. Gupta, A. S. Ghosh, A. S.

Chakraborty, and P. Ghosh, “Modelling hybrid

featurebased phishing websites detection using

machine learning techniques,” Journal of King Saud

University - Computer and Information Sciences,

2022.

[7] H. Shirazi, A. Ghiasi, and R. Jalili, “About

performance of NLP transformers on URLbased

phishing detection for mobile devices,” in Proc.

IEEE Int. Conf. Big Data, 2021.

[8] A. Alswailem, M. Alshamrani, and A.

Almulhem, “Machine learning for detecting phishing

websites,” in Proc. 5th Int. Conf. Inf. Syst. Security

Priv., 2020, pp. 435–440.

[9] G. Sonowal and K. S. Kuppusamy,

‘‘PhiDMA—A phishing detection model with multi-

filter approach,’’ J. King Saud Univ., Comput. Inf.

Sci., vol. 32, no. 1, pp. 99–112, Jan. 2020.

[10] A. K. Jain and B. Gupta, ‘‘PHISH-SAFE:

URL features-based phishing detection system using

machine learning,’’ in Cyber Security. Switzerland:

Springer, 2018, pp. 467–474.

