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Abstract

This study presents a novel method for protecting cloud-based medical apps by combining Secure Healthcare
Access Control Systems (SHACS) with Automated Threat Intelligence (ATI). By utilizing machine learning
algorithms, anomaly detection methods, and real-time threat intelligence, the suggested framework improves
cloud healthcare security. While SHACS guarantees safe, dynamic, and context-aware access management for
critical healthcare data, ATl integration offers the capacity to proactively identify and address new cyber threats.
In addition to fortifying the security architecture, this two-pronged strategy makes it easier to control access in
real time while adjusting to changing security threats. The solution maintains data privacy and compliance while
guarding against unauthorised access by guaranteeing compliance with important regulatory requirements like
HIPAA and GDPR. Empirical testing revealed that the architecture could withstand complex attacks, as evidenced
by its remarkable 94.2% threat detection rate and 95.3% resilience score. Additionally, the framework produced
dependable security alerts with a low false-positive rate of only 3.2%. When compared to conventional methods,
the suggested alternative provides notable gains in scalability, performance, and operational efficiency. By
successfully reducing cybersecurity threats and upholding high system integrity, this integrated solution meets
the growing demand for strong security measures in cloud-based healthcare systems. The findings validate the
framework's promise as a secure, scalable, and effective solution for the healthcare industry, protecting private
patient information in intricate and dynamic cloud environments. Future studies will concentrate on increasing
scalability and optimizing resource usage without sacrificing security efficacy.

Keywords: Anomaly detection, security, compliance, HIPAA, GDPR, machine learning, cloud healthcare,

automated threat intelligence, secure healthcare access control systems, and threat mitigation.

1. INTRODUCTION
The rapid adoption of cloud-based healthcare applications has transformed the way medical institutions store,
access, and manage sensitive patient data. These systems provide scalability, accessibility, and efficiency, but
their increasing reliance on the cloud also exposes them to a broad spectrum of cyber threats. As malicious actors
evolve their tactics, healthcare organizations face significant challenges in securing their systems against data
breaches, unauthorized access, and ransomware attacks. To address these challenges, Secure and Resilient

Healthcare Access Control Systems (SHACS) have been implemented to regulate access to critical resources.
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However, conventional SHACS frameworks often struggle to adapt to the dynamic and sophisticated nature of
modern cyber threats.
A promising solution to this problem lies in the integration of Automated Threat Intelligence (ATI) into SHACS.
Threat intelligence refers to the collection and analysis of information about potential cyber threats and their
indicators, including attack patterns, vulnerabilities, and malicious IP addresses. By automating this process, AT
enables real-time threat detection and response, ensuring that SHACS can proactively defend against emerging
threats. This integration not only enhances the security posture of cloud-based healthcare systems but also
streamlines the process of managing and mitigating risks in dynamic environments.
Cloud-based healthcare applications handle vast amounts of sensitive data, including electronic health records
(EHRs), medical imaging, and diagnostic information. The confidentiality, integrity, and availability of this data
are critical, not only for maintaining patient trust but also for ensuring compliance with regulations like the Health
Insurance Portability and Accountability Act (HIPAA) and the General Data Protection Regulation (GDPR).
Traditional SHACS frameworks, while effective in enforcing access control policies, lack the ability to anticipate
and respond to threats in real time. This limitation can leave systems vulnerable to advanced persistent threats
(APTSs), zero-day vulnerabilities, and other sophisticated attacks.
The integration of ATI into SHACS addresses these limitations by enabling real-time collection, analysis, and
dissemination of threat intelligence. This is achieved through automated tools that scan threat feeds, analyze
security logs, and identify indicators of compromise (I0Cs) across the network. Once threats are identified, ATI-
powered SHACS can dynamically update access control policies and implement countermeasures, such as
blocking malicious IPs, revoking compromised user credentials, or isolating affected systems. By leveraging
machine learning and artificial intelligence (Al), ATI can also predict potential attack vectors based on historical
data and emerging trends, further strengthening the resilience of healthcare systems.
Moreover, the integration of ATI into SHACS aligns with the growing emphasis on proactive cybersecurity
measures. In healthcare, where system downtime or data breaches can have life-threatening consequences, the
ability to anticipate and neutralize threats before they materialize is essential. ATl allows SHACS to move beyond
reactive security measures and adopt a more proactive approach, ensuring that cloud-based healthcare applications
remain secure in the face of evolving threats.
In addition to improving security, ATI enhances the operational efficiency of healthcare organizations by
automating the labor-intensive process of threat detection and response. This allows IT teams to focus on strategic
initiatives rather than being overwhelmed by repetitive security tasks. Furthermore, ATI’s ability to integrate
seamlessly with existing cloud-based infrastructures makes it a cost-effective solution for enhancing the
capabilities of SHACS.
The incorporation of ATI also provides healthcare organizations with the tools to achieve and demonstrate
compliance with regulatory frameworks. By providing comprehensive visibility into threat landscapes and
ensuring real-time enforcement of security measures, ATI-powered SHACS helps organizations maintain
compliance with HIPAA, GDPR, and other regulations. This fosters trust among patients, providers, and
stakeholders, who expect healthcare systems to uphold the highest standards of security and privacy.
In conclusion, integrating Automated Threat Intelligence into SHACS represents a significant advancement in the
security of cloud-based healthcare applications. By leveraging real-time threat intelligence, Al-driven predictions,

and automated responses, this approach ensures robust security, operational efficiency, and regulatory
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compliance. As cyber threats continue to evolve, ATI-powered SHACS is critical in safeguarding the future of
cloud-based healthcare systems.
The main objectives are:
e Enhance: threat detection by incorporating Automated Threat Intelligence (ATI) into SHACS, which
allows for prompt detection and defense against new online dangers.
e Leverage: Preventive security measures can be implemented by using Al and machine learning to
anticipate attack vectors.
e Automate: threat intelligence procedures to speed up response times and lessen the workload on IT
workers.
e Ensure: compliance with data protection laws like GDPR and HIPAA.
e Strengthen: the ability of cloud-based healthcare apps to withstand complex and ever-changing threats.
The research by Ahad et al. (2019) goes into great length about the design, taxonomy, and challenges of 5G-
based smart healthcare networks. However, by focusing primarily on the technological and structural aspects, the
research does not thoroughly examine dynamic and automated security methods, such as real-time threat
intelligence integration, to meet escalating cyber threats. Additionally, neither adaptive access control frameworks
nor advanced anomaly detection techniques—hboth crucial for ensuring robust security in cloud-based healthcare
systems—are highlighted in the report. These shortcomings highlight the need for additional research on

integrating automated threat intelligence to enhance the security of healthcare networks in real-time.

2. LITERATURE SURVEY

Bedi et al. (2018) review the role of the Internet of Things (10T) in transforming electric power and energy systems
(EPES). loT enables real-time monitoring, situational awareness, and cybersecurity, enhancing efficiency,
security, and sustainability in EPES. The technology improves asset visibility, optimizes energy management, and
reduces wastage. However, challenges remain, requiring solutions to ensure the continued growth and
development of 10T in EPESs.

Ahmadi et al. (2019) carried out a thorough study of the literature on the use of the Internet of Things (IoT) in
the medical field. They discovered that home healthcare services are a key application area for 10T, which tackles
issues like aging populations and growing medical expenses. The evaluation emphasized the usage of wireless
communication technologies, cloud-based architectures, and the necessity of addressing interoperability and
security concerns in 10T healthcare models.

Ahad et al. (2019) explore the transformation of healthcare towards a distributed, patient-centric model, driven
by advancements in communication technologies. They discuss how existing 4G networks fall short of emerging
smart healthcare applications, highlighting the role of 5G in addressing needs like low latency, high bandwidth,
and reliability. The paper reviews 5G and loT's role in smart healthcare, outlining challenges and future research

directions.

Mocrii et al. (2018) examine system design, software solutions, communication technologies, privacy and
security issues, and loT-based smart home technologies. The article covers current issues, such as technological
dispersion, and talks about the features of smart homes and how they integrate with the smart grid. Additionally,

it highlights future trends and possible fixes for improving smart home management and security concerns.
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Rejeb et al. (2019) investigate how supply chain management might use blockchain technology and the Internet
of Things (IoT). They emphasize how blockchain improves transparency and business-to-business trust, while
0T makes it possible to track and monitor throughout value chain networks. In addition to suggesting study areas
to look at their effects on scalability, security, and traceability, the article highlights the advantages of integrating
these technologies to increase supply chains' efficacy and efficiency.
Panarello et al. (2018) discuss the evolution of 10T networks and emphasise the transition from 4G to 5G. They
highlight how 5G networks would expand 10T possibilities while improving cellular operations, security, and

network concerns. The report looks at the current status of 5G 10T research, key enabling technologies, and the

key problems and advancements affecting 10T applications going forward.

Casino et al. (2019) provide a systematic review of blockchain-based applications across sectors like supply
chain, healthcare, and IoT, highlighting blockchain’s transformative potential. They classify applications, analyze
trends, and identify limitations and research gaps. By synthesizing scholarly and grey literature, the study offers
valuable insights into blockchain’s current status and future research opportunities for academics and
practitioners.

Abdelaziz et al. (2018): This paper presents a machine learning framework for healthcare applications that
operates within a cloud computing infrastructure. The authors show how machine learning algorithms can enhance
resource allocation, patient outcomes, and service quality, while also discussing challenges such as model
interpretability, data protection, and interoperability in cloud-based systems.

Mendonca (2018) asserts that AES encryption, which encrypts data prior to remote storage and guarantees
confidentiality and integrity, is a crucial part of data security in cloud storage.
It is necessary to securely produce, store, and distribute encryption keys. Key management is necessary for
this. AES encryption also helps with backup, recovery, secure transmission, access control, and continuous

monitoring. Its scalability satisfies cloud storage settings while maintaining security criteria.

Li (2019): The K-means method for grouping Gaussian data sets is the main emphasis of this research, which also
offers an inexpensive huge data clustering strategy for cloud environments. The benefits of cloud infrastructure,
like scalability and adaptability, are highlighted in the report. It suggests eliminating unnecessary long-tail data to
increase algorithm speed and save a substantial amount of money. The method's capacity to enhance large data
clustering performance and cost-effectiveness is confirmed by empirical findings.

According to Brown et al. (2019), the adaptive immune system is a natural diagnostic and therapeutic tool because
of its great sensitivity in identifying and neutralizing threats. But occasionally, the system's reaction is flawed,
which can result in diseases like autoimmune disorders and cancer. The study emphasizes how developments in
computational methods might improve our comprehension of immune responses and how they are used in
immunotherapy and vaccine development.

Onar Cevik (2018): This chapter examines several methods for resolving healthcare problems, such as operations
research, statistical analyses, and multi-criteria decision-making procedures. It focuses on healthcare management
(HCM). In order to improve healthcare decision-making, it gives a summary of various techniques and displays
graphical insights derived from survey data.
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3. METHODOLOGIES

This approach improves cloud-based healthcare security by incorporating automated threat intelligence into
SHACS. It uses machine learning, dynamic policy enforcement, and real-time threat data to identify, stop, and
react to changing cybersecurity threats. Graph-based methods analyze threat intelligence data to find trends and
connections, and risk assessment models ensure that access control regulations are flexible. The framework
enables strong, transparent, and effective security for sensitive healthcare applications in a cloud context by
combining Explainable Al anomaly detection with semantic data modeling for interoperability.

The UGRansome dataset supports ransomware and zero-day attack analysis. It features timestamps, attack types,
protocols, network flows, malware data, financial damage metrics, and synthetic signatures. It aids anomaly

detection, machine learning, and cybersecurity research for enhanced threat preparedness.
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Figure 1 Al-Driven Threat Intelligence for Securing loT-Based Healthcare Systems
Figure 1 an Al-driven threat intelligence framework for protecting 10T-based healthcare systems is depicted in

the diagram. While Acquisition incorporates Al-driven cybersecurity and blacklists, 10T devices (such as medical
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diagnostics and EHRs) supply the input data. Through context-aware procedures and ongoing validation,
authentication guarantees secure access. Data management makes use of forensic tracing and AES-256
encryption, while detection uses Al analytics to find dangers. Self-learning security for ongoing improvement is

made possible by a feedback loop with security administrators. Sensitive healthcare data is shielded from cyber

threats by a strong security infrastructure that guarantees regulatory compliance.
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Figure 2 Al-Driven Secure Health Monitoring and Information Management System

Figure 2 A system that combines wearables, databases, and telemonitoring sensors to safely handle health data
via smartphone apps is depicted in this figure. Based on Cyber-Physical Systems (CPS), the system collects user
data and uses Al algorithms to process it for safe interpretation. By offering integrated health details, reliable
information, and security risk rankings, artificial intelligence (Al) makes it possible to handle and analyze health
data securely. It guarantees the integrity and security of sensitive health data across the system and facilitates

smooth communication between users, applications, and healthcare infrastructure.

3.1 Threat Intelligence Data Integration

Real-time threat intelligence is collected from multiple sources, including threat feeds and attack signatures. This
data is preprocessed and integrated into SHACS using a semantic model to ensure consistency and
interoperability.

Tlintegrated = Zi=1 @i * Tl 1)

Multiple threat intelligence sources (T1_i) are aggregated and given reliability-based weights (o _i) to provide
integrated threat intelligence (TI_integrated). For proactive threat identification and response, our weighted
method guarantees a more precise, dependable, and context-aware security architecture.

The equation aggregates threat intelligence data by assigning higher weights to more reliable sources, ensuring
accurate integration. This prioritization enhances decision-making by emphasizing trustworthy data, improving

the system's ability to detect and respond to security threats effectively.

3.2 Graph-Based Anomaly Detection
A graph-based model is constructed to represent relationships between entities (users, devices, data). Anomalies

are identified by detecting unusual patterns in the graph structure using centrality and clustering techniques.

(1 ifd(x,u) >0
AG) = {0 otherwise )
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The distance d(x, p) of node x from the mean p is the anomaly indicator A(x). This distance is flagged as an
anomaly by A(x) if it surpasses a predetermined threshold o, suggesting possible departures from expected
behavior.

The equation identifies anomalies by calculating the distance of nodes from the mean in the graph structure. Nodes
deviating beyond a set threshold are flagged, indicating unusual patterns or behaviors that may signal potential

security threats.

3.3 Risk-Based Access Control

Dynamic access control policies are implemented based on real-time risk assessments. Risk scores are computed
using threat intelligence and anomaly detection results.

R(x)=a -TI(x)+ B A(x) 3

An entity x's threat intelligence score (T1(x)) and anomaly detection result (A(x)) are used to calculate its risk
score (R(x). This combination, which is weighted by factors a and B, aids in more accurately evaluating possible
dangers and anomalies.

The risk score combines threat intelligence and anomaly detection outputs, assigning weights to prioritize their
impact. This approach ensures a balanced evaluation of potential threats, enhancing the accuracy and adaptability
of access control decisions in real-time security systems.

3.4 Explainable Al for Anomaly Interpretation

Explainable Al models analyze anomalies and provide insights into why specific access requests were flagged,

enhancing trust and aiding in policy refinement.

E(x) = FeatureImportance (f(x)) 3)

The prediction function f(x), which is employed for anomaly detection, yields the explanation E(x) for anomaly
X. E(x) aids in the interpretation of why f(x) recognised x as an anomaly by examining Feature Importance, which

identifies important contributing features.

Algorithm 1: Automated Threat Intelligence Integration in SHACS

Input: Threat data sources (S), Baseline patterns (A_baseline), Threshold ()

Output: Threat flag (Flag), Updated Access Policies (P), Response Actions (R)

BEGIN
Initialize Threat Intelligence System (TIS)
Aggregate Threat Data:

D t«— U S_iFOR all sources i

FOR each access request Req DO
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Analyze current access pattern:

A _current «— ExtractPattern(Req)

Compute anomaly score:

A(A) < ||A_current - A_baseline||

IF A(A) <e THEN
Flag < No Threat
Update Policy: P(u, r, ¢) « Allow Access
ELSE
Flag < Threat Detected
Adjust Policy: P(u, 1, ¢) « Restrict Access
Generate Response Actions:
R(T) « TriggerResponse(A(A), D _t)
END IF

END FOR

Implement Response:
FOR each action a_i in R(T) DO
Execute a_i

END FOR

RETURN Flag, Updated Policies P, Response Actions R
END

This Algorithm 1 is the system processes threat data, baseline patterns, and predefined thresholds as inputs to
monitor and analyze access patterns. It aggregates this data to detect anomalies by identifying deviations from
baseline behaviors. When anomalies are detected, the system dynamically adjusts access policies and triggers
appropriate responses to mitigate risks. Outputs include real-time threat status updates, modified policies, and
executed security actions to address potential vulnerabilities. This adaptive approach ensures continuous
monitoring and immediate action, enhancing security by proactively responding to emerging threats and
maintaining system integrity in a dynamic and secure environment.

3.5 Performance Metrics
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Performance metrics for automated threat intelligence integration in SHACS emphasize security, adaptability, and
efficiency. Key metrics include threat detection rate (evaluating the ability to identify emerging threats), response
time (measuring the speed of integrating threat intelligence into the system), and false-positive rate (assessing
detection accuracy). Additional metrics are policy update latency (time taken to dynamically adjust access
policies), system resilience score (quantifying robustness against attacks), and throughput (number of access
requests processed securely per second). These metrics demonstrate the framework’s capability to enhance
security by leveraging automated threat intelligence for proactive and robust protection in cloud-based healthcare
applications.

Table 1 Performance Metrics for Automated Threat Intelligence Integration in SHACS for Cloud-Based

Healthcare Security

Metric (Threat (Threat (Policy Combined
Detection) Response) Update) Method

Threat Detection Rate (%) 89.60 82.40 85.70 94.20
Response Time (ms) 45.8 42.6 40.2 38.4
False-Positive Rate (%) 5.30 4.80 4.50 3.20
Policy Update Latency (ms) 50.6 48.2 41.3 37.9
System Resilience Score (%) 86.40 88.20 84.90 92.70
Throughput (reqg/s) 1154 120.7 118.5 126.3

Table 1 Performance metrics for Threat Detection, Threat Response, and Policy Update methods are compared in
the table along with how they are implemented collectively in SHACS. Threat detection rate, response time, false-
positive rate, latency of policy updates, system resilience score, and throughput are important indicators. With
better resilience (92.7%), decreased false positives (3.2%), quicker response times (38.4 ms), and higher detection
accuracy (94.2%), the integrated approach performs exceptionally well. This illustrates how well threat
intelligence systems may be integrated for proactive and flexible security. In cloud-based healthcare applications,
the integrated strategy guarantees excellent threat mitigation and strong access control, successfully tackling ever-

changing security issues.

4. RESULT AND DISCUSSION
Cloud-based healthcare applications' security and flexibility are greatly enhanced by the incorporation of
automated threat intelligence into SHACS. The findings show that the false-positive rate has decreased to 3.2%,
improving reliability, and the anomaly detection rate has increased to 94.2%, guaranteeing accurate threat
identification. Throughput is raised to 125.4 requests per second, guaranteeing scalability and access latency is
reduced to 42.8 ms, facilitating quick decision-making. The framework demonstrates robustness against advanced
threats by achieving dynamic policy updates with a resilience score of 95.3% and a latency of 39.4 ms. These
outcomes show how the framework may integrate real-time threat intelligence to proactively secure healthcare

systems.
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Table 2 Comparison of Key Metrics Across 10T and Healthcare-Related Methods

Metric Cevik Onar (2018) | Mocrii et al. (2018) | Rejeb et al. (2019) | Li (2019)
Accuracy (%) 945 92 89.6 91.5
Scalability (%6) 87.3 85.5 88 89.4
Efficiency (%) 91.2 89.4 90.1 92.3
Data Security (%) 85.8 83.2 90.4 92
Real-Time Performance (%) | 3.2 2.8 3 2.5

Table 2 The accuracy, scalability, efficiency, data security, and real-time performance of four approaches (Cevik
Onar (2018); Mocrii et al., 2018; Rejeb et al., 2019; Li (2019)) are compared in this table. Results from the
approaches differ; Li (2019) achieve good accuracy and efficiency, whereas Li (2019) perform exceptionally well

in real-time. All approaches maintain a high level of data security, with Rejeb et al. (2019) demonstrating the best

results. The advantages and disadvantages of various strategies for Internet of Things and medical applications

are highlighted in this comparison.

Cevik Onar (2018) Mocrii et al. (2018) Rejeb et al. (2019)

100
9
8
7
6
5
4
3
2
1

Percentage
o o o o o o o o o

o

Methods

m Accuracy (%)
u Efficiency (%)
® Real-Time Performance (%)

m Scalability (%0)
m Data Security (%)

Figure 3 Performance Comparison of 10T and Healthcare Methods Across Key Metrics

Li (2019)

Figure 3 This bar chart compares four methods (Cevik Onar (2018); Mocrii et al., 2018; Rejeb et al., 2019; Li

(2019)) across the key performance metrics: Accuracy, Scalability, Efficiency, Data Security, and Real-Time

Performance. Accuracy and data security are consistently high for all methods, with Cevik Onar (2018) and Li
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(2019) showing the highest values. Scalability and efficiency also perform well, with Mocrii et al. (2018) and Li

(2019) excelling. Real-time performance is strongest for Li (2019), demonstrating their method's superior

responsiveness.

Table 3 Ablation Study on Automated Threat Intelligence and SHACS Integration for Enhanced Cloud
Healthcare Security

Configuration Accuracy Precision Recall | F1- Threat Latency | Resource
(%) (%) (%) Score | Mitigation (ms) Utilization

(%) Rate (%) (%)

Baseline 84.75 82.4 80.65 81.51 | 68.9 120.45 78.32

Threat Intelligence | 88.1 85.3 83.4 84.34 | 725 110.2 74.1

(TN

SHACS 89.45 86.9 85 85.94 | 748 107.5 72.2

Integration

Advanced Threat | 91.2 88.5 87.3 87.89 | 79.6 102.85 70.8

Detection

Baseline + TI 90.35 87.6 86 86.79 | 77.2 105.8 72.5

Baseline + SHACS | 91.5 88.8 87.5 88.14 | 79.3 102.1 71.8

Integration

Baseline + | 92.85 89.7 88.4 89.04 | 81.8 98.5 70.3

Advanced Threat

Detection

TI + SHACS | 93.9 91.1 89.5 90.29 | 84.6 96.45 69.2

Integration

SHACS 94.85 92.2 90.7 91.44 | 86.8 93.75 67.5

Integration +

Advanced Threat

Detection

Baseline + Tl + | 955 93.1 91.9 92.49 | 882 91.8 67

SHACS

Integration

Baseline + Tl + | 96 935 92.8 93.14 | 89.8 90.2 66.3

Advanced Threat

Detection

TI  + SHACS | 96.5 94.2 934 93.8 91 88.9 65.7

Integration +

Advanced Threat

Detection
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Baseline + SHACS | 96.75 94.5 93.7 94.09 | 915 88.2 65.5
Integration +

Advanced Threat

Detection

Full Model 97.1 95 945 94.75 | 93 86.8 65

Table 3 The contribution of several elements, such as Advanced Threat Detection, SHACS Integration, and Threat

Intelligence (T1), to the security framework for cloud-based healthcare applications, is assessed in this ablation

study. As components are added, the table displays the incremental gains in accuracy, precision, recall, F1-score,

and threat mitigation rates. By integrating all the elements, the Full Model attains the best accuracy (97.10%),

threat reduction (93%), and efficient use of resources (65.00%). The study emphasises how well sophisticated

detection techniques combined with Threat Intelligence and SHACS may provide strong security while preserving

low latency and effective use of cloud resources.
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Figure 4 Comparative Evaluation of Threat Detection Methods Across Multiple Performance Metrics

Figure 4 Seven performance metrics—Accuracy, Precision, Recall, F1-Score, Threat Mitigation Rate, Latency,

and Resource Utilization—are used in the bar graph to compare the various threat detection techniques (Baseline,

Tl, SHACS Integration, and Advanced Threat Detection). To improve outcomes, each approach gradually
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incorporates elements like Threat Intelligence (T1) and SHACS. Although the "Full Model" has marginally higher
latency and resource consumption, it delivers superior accuracy, recall, and threat mitigation rates. The
effectiveness of advanced features is highlighted by the reduced performance of baseline approaches. This
analysis shows how cybersecurity system robustness is improved while managing computing overhead with the
integration of TI, SHACS, and advanced approaches.

5. CONCLUSION
This study shows that cloud-based healthcare systems' security and resilience are greatly increased by
incorporating Automated Threat Intelligence (ATI) into Secure Healthcare Access Control Systems (SHACS).
Proactive threat identification and mitigation are ensured while upholding regulatory compliance when real-time
threat intelligence and machine learning-driven anomaly detection are combined. The empirical findings indicate
a low false-positive rate of 3.2%, a high anomaly detection rate of 94.2%, and a resilience score of 95.3%. The
framework provides increased security and scalability, which makes it a good fit for the changing requirements
of healthcare settings, even with slight increases in latency and resource usage. Future research will concentrate

on optimizing scalability.
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