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Abstract 

The primary goal of Super-Resolution (SR) is to create a higher resolution image by enhancing lower resolution 

images. This is crucial because high-resolution images contain more pixels, providing finer details of the original 

scene. The demand for high resolution is widespread in computer vision applications, as it improves pattern 

recognition and image analysis performance. In fields like medical imaging, high resolution is essential for accurate 

diagnosis. Moreover, various applications such as surveillance, forensics, and satellite imaging require high-

resolution capabilities for zooming into specific areas of interest.  However, obtaining high-resolution images can 

be challenging and costly due to limitations in sensor and optics manufacturing technology. To address these issues, 

Super-Resolution Convolutional Neural Networks (SRCNN) have emerged as a cost-effective solution. SRCNN 

enables the transformation of low-resolution images to high-resolution ones, allowing the utilization of existing 

low-resolution imaging systems. As implied by its name, SRCNN is a deep convolutional neural network that learns 

to map low-resolution images to high-resolution ones in an end-to-end manner. This approach significantly 

improves the quality of low-resolution images. Unlike traditional methods that handle different components 

separately, SRCNN optimizes all layers together. The performance of the network is assessed using image quality 

metrics such as peak signal-to-noise ratio (PSNR) and mean squared error (MSE). Additionally, the Open 

Source Computer Vision Library (OpenCV) is utilized for pre and post-processing of the images 

Keywords – Super Resolution, High Resolution Image, Super Resolution Convolution Neural Network, Deep 

Learning,  

INTRODUCTION 

With the Internet boom and rapid growth of information technology, the demand for signal and 
information processing has increased significantly[1-2]. Image processing has become a vital 

part of this information processing landscape[3]. As displays and screens enable higher 

resolutions, the consumption of high-resolution content, such as 4K resolution videos and 

images, is on the rise. To cater to the need for greater fidelity, image super-resolution 

techniques have been proposed to artificially enhance image resolution [4].One major 

challenge in computer vision is single image super-resolution (SR), aiming to upscale a high-

resolution image from a low-resolution one[5]. This problem is fundamentally ill-posed since 
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multiple solutions exist for each low-resolution pixel, making it non-unique and undefined[6]. 

To tackle this, the solution space is usually constrained by leveraging strong prior 

knowledge[7]. State-of-the-art methods often employ example-based learning, utilizing 

internal similarities within the same image or mapping functions learned from external low- 

and high-resolution image pairs[8-10]. For generic super-resolution, external example-based 

approaches can be formulated or adapted to fit specific tasks, like face hallucination, by 

configuring the training samples accordingly. As information technology advances, fulfilling 

the demand for high-definition images using low-resolution ones has become challenging. 

High-resolution images offer higher pixel density, precise information, and rich data that are 

essential for practical image analysis and recognition. The single-image super-resolution 

algorithm can be categorized into bi-cubic interpolation, image reconstruction, and dictionary 

learning methods. Despite these three types, the debate mainly revolves around learning-based 

approaches within these categories, leading to two groups of related algorithms based on the 

source of the training patch: external and internal datasets. 

1.1 Convolution Neural Networks (CNNs): 

Convolutional Neural Networks are a class of deep learning models designed primarily for image processing tasks, 

though they are also used for other data types, such as audio and text. CNNs are inspired by the visual processing 

mechanism of the human brain and have proven highly effective in computer vision tasks like image classification, 

object detection, image segmentation, and more. In fig.1 CNN architecture is shown. 

Different Components of CNNs: 

1. Input Layer: 

   - The input layer is the first layer in the CNN and takes the raw input data, typically an image or a tensor 

representing the data. 

2. Convolutional Layers: 

   - Convolutional layers are the core building blocks of a CNN. They consist of learnable filters (kernels) that 

slide over the input data to perform element-wise multiplications and produce feature maps. 

   -  The convolution operation helps the network identify local patterns and features in the input data. This is 

illustrated in fig.2. 

3. Activation Function: 

   - After each convolution operation, an activation function is applied element-wise to introduce non-linearity 

into the network. 

   - Common activation functions include ReLU (Rectified Linear Unit), Leaky ReLU, Sigmoid, and Tanh. 

4. Pooling Layers: 

   - Pooling layers downsample the spatial dimensions of the feature maps, reducing computational complexity 

and making the network more robust to small translations and distortions. 

   - Max pooling and average pooling are common pooling techniques used to select the maximum or average 

values within a specific window. 

5. Fully Connected Layers (Dense Layers): 

   - Fully connected layers are typically located towards the end of the CNN and connect every neuron in one layer 

to every neuron in the next layer. 

   - They are used for making predictions based on the extracted features from earlier layers. 
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Fig 1: Convolution Neural Network Architecture 

 

6. Flattening Layer: 

   - Before the fully connected layers, the feature maps need to be flattened into a 1D vector. 

   - This process combines all the spatial information into a single vector, which is then fed into the dense layers. 

 

7. Output Layer: 

   - The output layer produces the final predictions or classifications based on the information learned by the 

previous layers. 

   - The number of neurons in the output layer depends on the task at hand; for example, it could be the number of 

classes in an image classification task. 

8. Loss Function: 

   - The loss function measures the difference between the predicted output and the true target labels. 

   - During training, the CNN aims to minimize this loss function, helping it learn the optimal parameters for 

making accurate predictions. 

9. Optimization Algorithm: 

   - The optimization algorithm is used during training to update the weights and biases of the CNN based on the 

gradients calculated from the loss function. 

   - Common optimization algorithms include Stochastic Gradient Descent (SGD), Adam, and RMSprop. 

These components work together to process input data, extract meaningful features, and make predictions,  

making CNNs powerful tools for various computer vision tasks 
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Fig:2. Convolution Operation Illustration 

1.2.  Image Processing 

Image processing is the use of digital computers and algorithms to analyze and manipulate digital images to obtain 

enhanced images and extract useful information. The process typically involves three main steps: 

1. Image acquisition through specialized software. 

2. Analysis and manipulation of the image. 

3. Output, which may include the modified image or a report based on the analysis results. 

 

RELATED WORK 

Single-image super-resolution algorithms can be classified into four groups based on the image priors 

they use: prediction models, edge-based methods, image statistical methods, and patch (or example-based) 

methods. Among these, the example-based methods have demonstrated state-of-the-art efficiency. Internal 

example-based methods leverage self-similarity within the input image to construct exemplary maps, as proposed 

by Glasner [8] for faster execution. External example-based methods, on the other hand, map external datasets 

between low and high-resolution image patches. These methods differ in how they connect low and high-

resolution patches to dictionary or tuple space and perform visualization in such spaces.Freeman et al. [9] 

pioneered the use of dictionaries defined as low and high-resolution patch groups, and they locate the nearest 

neighbor (NN) of the input patch in the low-resolution space, using the corresponding high-resolution patch for 

restoration. Various mapping functions, such as simple function, kernel regression, random forest, and anchored 

neighborhood regression, have been proposed to improve mapping efficiency and accuracy.Modern super-

resolution techniques often employ sparse coding-based approaches, which focus on enhancing patches. The 

process involves separate phases of patch extraction and integration, known as pre and post-processing. While 

most super-resolution algorithms focus on single-channel or grayscale images, methods for color images often 

convert the problem to another color space (YCbCr or YUV) and apply super-resolution to the luminance space. 
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Some studies have aimed to super resolve all color channels simultaneously, where each RGB channel 

is processed independently and then combined for the final output. However, research on the efficiency of 

different channels and the need to retrieve all three channels remains limited[3-7]. In the context of picture 

restoration, deep learning approaches have been utilized. For instance, multi-layer perceptron (MLP) models with 

fully connected layers have been applied for natural image denoising and post-deblurring denoising. In an internal 

example-based approach, Cui et al. [17] propose incorporating auto-encoder networks into the super-resolution 

pipeline. However, the deep model in this approach is not explicitly designed as an end-to-end solution, unlike 

the suggested SRCNN (Super-Resolution Convolutional Neural Network), which optimizes end-to-end mapping 

and offers higher speed and technical utility.  

 

PROBLEM DEFINITION 

The plan is to create and train a fully convolutional neural network (CNN) for image super-

resolution. This network will directly learn the mapping between low-resolution and high-

resolution images without requiring extensive pre or post-processing steps 
 
PROPOSED APPROACH 

 

The objective is to enhance low-resolution images and generate high-resolution 

versions from them. To achieve this, we propose using the SRCNN model, which establishes 

a direct mapping between low-resolution images and their corresponding high-resolution 

counterparts. Below, we provide an overview of the model. 

 

4.1 Super-Resolution Convolutional Neural Networks (SRCNN Model: 

Considering a single low-resolution image, we begin by using bicubic interpolation, the only pre-processing step, 

to upscale it to the desired scale. The interpolated image is denoted as Y. The objective is to reconstruct an image, 

F(Y), from Y, which closely resembles the high-resolution picture X of the original ground truth image. Although 

Y has the same dimensions as X, we still refer to it as a "low-resolution" image for clarity. The learning process 

involves mapping F, which comprises three conceptual operations: 

1) Patch extraction and representation 

2) Non-linear mapping 

3) Reconstruction. 

 

Fig.3 Proposed SRCNN Architecture 
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4.1.1 Patch extraction and representation:  

In this step, patches are extracted from the low-resolution image Y in an overlapping manner. Each 

patch is then represented as a high-dimensional vector, consisting of a set of feature maps, with the 

number of maps equal to the vector's dimensions. 

Traditionally, image restoration methods involve retrieving patches tightly and representing them 
using pre-trained bases like PCA, DCT, or Haar. This process can be likened to a series of filters 
convolving the image, with each filter acting as a basis. However, in our approach, we integrate the 
enhancement of these bases into the network itself.Formally, the first layer of the network (F1 
operation) is expressed as follows: 

F1(Y) = max(0, W1 * Y + B1), 

In this expression, W1 represents a set of n1 support filters of size c x f1 x f1, where c is the number 
of channels in the input image, and f1 is the spatial size of the filters. W1 applies n1 convolutions to 
the image, with each convolution having a kernel size of c x f1 x f1. The output consists of feature 
maps of size n1. B1 is an n1-dimensional vector, where each element corresponds to a filter in the 
network. The Rectified Linear Unit (ReLU) function, max(0, x), is applied to the filter responses [33].  

4.1.2 Non-linear mapping:  

In a non-linear fashion, this approach maps each high-dimensional vector to another high-dimensional 
vector, where the mapped vector conceptually represents a high-resolution patch. For each patch, a 
n1-dimensional feature is obtained from the first layer. These n1-dimensional vectors are then 
mapped to n2-dimensional vectors in the next operation. This mapping involves the application of n2 
filters with a spatial support of 1x1. While this explanation holds for 1x1 filters, it can easily be 
extended to broader filters like 3x3 or 5x5. In such cases, the input image patch is not directly involved 
in the non-linear mapping; rather, it is the 3x3/5x5 patch on the feature map. 

The second layer operation is expressed as follows: 

F2(Y) = max (0, W2 * F1(Y) + B2) 
 

In this expression, W2 comprises n2 n1 x f2 x f2 filters, and B2 is an n2-dimensional vector. Each of 
the n2-dimensional output vectors represents a visualization of a high-resolution patch used for 
reconstruction. 

To introduce more non-linearity, additional convolutional layers can be added. However, this 
increases the model's complexity and consequently requires more time for training.  

4.1.3 Reconstruction: 

 In this step, the final high-resolution image is assembled by combining the high-resolution patch-wise 
representations obtained from the previous stages. The resulting image is expected to closely 
resemble the Ground Reality X. 
Conventional methods for generating the final full image often involve averaging the overlapping high-resolution 

patches. This averaging process can be seen as using a pre-defined filter over a vector of feature maps. However, 

in our approach to achieve the desired high-resolution image, we introduce a convolution layer influenced by 

this process: 

F(Y) = W3 * F2(Y) + B3 
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Here, W3 consists of c filters with a size of n2 x f3 x f3, and B3 is a c-dimensional vector. This convolution 

operation effectively combines the high-resolution patch-wise representations to form the final high-resolution 

image.  

 

Algorithm: SRCNN 

Input: Low-resolution image Y (H x W x C), Parameters (W1, W2, W3, B1, B2, B3) 

 
1. Preprocessing: 

   - Upscale the low-resolution image Y using bicubic interpolation to obtain Y_interpolated. 

 

2. Patch Extraction and Representation: 

   - Initialize an empty list Patches. 

   - For each patch P_i of size f1 x f1 extracted from Y_interpolated: 

     - Compute the high-dimensional vector V_i using the first layer (F1) of SRCNN: 

       V_i = max(0, W1 * P_i + B1). 

     - Append V_i to the list Patches. 

 

3. Non-linear Mapping: 

   - Initialize an empty list Representations. 

   - For each high-dimensional vector V_i in Patches: 

     - Compute another high-dimensional vector U_i using the second layer (F2) of SRCNN: 

       U_i = max(0, W2 * V_i + B2). 

     - Append U_i to the list Representations. 

 

4. Reconstruction: 

   - Initialize an empty list HighResPatches. 

   - For each high-dimensional vector U_i in Representations: 

     - Reconstruct the high-resolution patch using the third layer (F) of SRCNN: 

       HighResPatch_i = W3 * U_i + B3. 

     - Append HighResPatch_i to the list HighResPatches. 

 

5. Output: 

   - Combine the high-resolution patches from HighResPatches to form the final high-resolution image 

F(Y_interpolated). 

 

End of Algorithm. 

 
 

In this algorithm, the SRCNN model is used to process the low-resolution image and learn an end-to-end 

mapping to generate the final high-resolution image. The patch extraction, non-linear mapping, and 

reconstruction steps are performed using the three layers (F1, F2, F) of the SRCNN model. The algorithm aims 

to enhance the resolution of the input image efficiently and produce a high-quality high-resolution output. 

EXPERIMENTAL RESULTS 
During the pre-processing stage, the input data is prepared for training on a machine learning model. In this 

particular model, the 91 selected images are decomposed into 22,000 sub-images, each of size 32. These sub-

images are then converted into arrays and stored as datasets for further use in the training process. 

5.1 Building & Training SRCNN Model 

The model, known as the 'Super Resolution Convolution Neural Network (SRCNN),' 

comprises three main parts: 
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1) Patch extraction and representation 

2) Non-linear mapping 

3) Reconstruction 

 

The training of the model was performed using the TensorFlow library. Each part of 

the model consists of one convolutional layer. The details of each layer are discussed in section 

3.1. The first layer serves as the input layer with a size of 32x32 and includes 128 filters, each 

of size 9x9. The second layer has 64 filters of size 3x3, while the output layer (third layer) 

consists of a single filter of size 5x5. All layers use Rectified Linear Unit (ReLU) as the 

activation function. The model is trained for 200 epochs using the Mean Squared Error (MSE) 

as the loss function. 

 

 

Fig 4: As mentioned in section 5.2, SRCNN Model is formed with three convolution layers. 

The above picture shows the layers in the trained model. Output shape represents the output 

size of each input from the layer. Param represents the total no of weights and biases. 
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Fig 5: The above figure shows the output after each epoch. The model is trained with 200 

epochs with the loss function of MSE. 

 

Fig 6: From above screen, click on ‘Select Image’ button to select the Image 
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Fig 7: Select an Image from the file folders 

 

Fig 8: After selecting Image, It will show the path to the Image at the bottom 



 

11 
 

 

Fig 9: Click on ‘Predict’ button to get high resolution Image. Left image is the original low 

resolution image and Right image is recovered high resolution image. Click ‘Save’ to save the 

image 

 

Fig 10: The above images are original image, downscaled low resolution image and Predicted 

High Resolution Image respectively from left to right.  
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Fig 11: The above image shows Validation Image set outputs 
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Fig 12: The above image compares the downscaled & recovered high resolution image 

metrics with respect to the original image 

CONCLUSION AND FUTURE WORK 

In conclusion, the proposed Super Resolution Convolutional Neural Network (SRCNN) model successfully 

recovers high-resolution images from their low-resolution counterparts. Through meticulous training and 

evaluation using metrics like Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR), the model 

demonstrates its effectiveness in enhancing image quality. 

The simplicity and robustness of the SRCNN model make it applicable to various low-level vision tasks, such as 

image deblurring and denoising. By exploring additional filters and advanced training methods, we can further 

optimize the model's efficiency and performance. 

Moreover, this Paper opens up promising opportunities in different sectors. In surveillance applications, the model 

can assist in improved detection and facial recognition from low-resolution surveillance camera images. In the 

medical field, the model's ability to generate high-resolution MRI images from lower resolution scans can aid in 

overcoming imaging challenges. Additionally, in media applications, super resolution offers cost-effective ways 

to store and deliver media content at different resolutions as needed. 

Overall, the SRCNN model proves to be a valuable tool for image enhancement, and its versatility extends to 

various domains, presenting exciting avenues for future research and real-world implementations. 
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