
1 

 
ISSN 2277-2685 

IJESR/Feb. 2021/ Vol-11/Issue-1/1-10 

Boddapati Soujanya et. al., / International Journal of Engineering & Science Research 

 

                Corresponding Author                  www.ijesr.org            1 

  

Scalable P2P Resource Locator (SPRL) 

 
1 Boddapati Soujanya, 2 Dr.T.Muni Sankar 3 Yezarla Ashok 

 
1 Associate Professor, Department of CSE, Rise Krishna Sai Gandhi Group of Institutions,2 Associate Professor, 

Department of CSE, Rise Krishna Sai Gandhi Group of Institutions, 3 Assistant Professor, Department of CSE, 

Rise Krishna Sai Gandhi Group of Institutions 

 

Abstract  

 
The Scalable P2P Resource Locator (SPRL) is a fundamental component in peer-to-peer (P2P) network 

architectures designed to efficiently and effectively locate resources across distributed networks. This abstract 

provides an overview of SPRL's key objectives, design principles, and functionalities.In the realm of Internet 

applications and distributed systems, the need for efficient resource discovery in a scalable and decentralized 

manner is paramount. SPRL addresses this challenge by offering a sophisticated framework for locating and 

accessing resources across a dynamic network of peers. Its design is underpinned by the following core principles: 

Scalability: SPRL is architected to seamlessly accommodate an ever-expanding network of peers and resources. It 

leverages techniques such as distributed hash tables (DHTs) and peer routing algorithms to ensure that the system 

can handle growth without compromising performance. 

This abstract serves as an introduction to the Scalable P2P Resource Locator (SPRL) framework, which plays a 

vital role in the modern landscape of internet applications. By adhering to these principles, SPRL empowers 

distributed systems to efficiently locate and access resources while maintaining scalability, decentralization, 

efficiency, and fault tolerance. 

 

1. Introduction 
 In the dynamic landscape of the internet and distributed systems, the efficient and decentralized discovery of 

resources is a critical necessity. Peer-to-peer (P2P) networks have emerged as a versatile solution for various 

applications, from file sharing to content distribution, and their effectiveness depends heavily on the ability to 

locate and access resources seamlessly. The Scalable P2P Resource Locator (SPRL) addresses this core challenge 

with ingenuity and sophistication.At its core, SPRL represents a fundamental building block in P2P network 

architectures, focusing on the seamless and efficient location of resources across a vast and ever-evolving network 

of peers. This introduction provides an overview of SPRL's objectives, significance, and the principles that 

underpin its design. 

 As the digital world continues to grow, the volume of data and resources available across the internet has expanded 

exponentially. Whether it's for retrieving files, searching for specific content, or accessing distributed services, the 

ability to locate resources swiftly and efficiently is a cornerstone of internet applications. 

 Traditional client-server models, while effective, have limitations when it comes to scalability, fault tolerance, and 

centralization. These constraints have given rise to P2P networks, where each participant, or peer, collaboratively 

contributes to the network's operation. However, P2P systems must grapple with the challenge of enabling peers to 

discover and access resources distributed across the network, a task that SPRL excels at. 

 

SPRL operates in alignment with several core principles: 

Scalability: The system is designed to scale seamlessly as more peers and resources join the network. This 

scalability is achieved through the use of distributed hash tables (DHTs) and intelligent peer routing algorithms that 

enable the system to grow without sacrificing performance. 

Decentralization: SPRL operates in a fully decentralized manner. It eliminates the need for centralized servers, 

ensuring that resource location requests are resolved directly between peers. This decentralization enhances the 

robustness and availability of the system. 

Efficiency: SPRL prioritizes efficiency in resource discovery. It employs optimization strategies such as caching 

and proximity-based routing to minimize query and retrieval latency, ensuring that users can quickly access the 
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resources they seek.Fault Tolerance: The system is built to withstand node failures, network disruptions, and other 

potential issues that can arise in a P2P environment. Redundancy, replication, and self-healing mechanisms are 

deployed to maintain system integrity. 

2. Related Work 

 
While Chord maps keys onto nodes, traditional name and lo- cation services provide a direct mapping between 

keys and val- ues. A value can be an address, a document, or an arbitrary data item. Chord can easily implement 

this functionality by storing each key/value pair at the node to which that key maps. For this reason and to make the 

comparison clearer, the rest of this section assumes a Chord-based service that maps keys onto values. 

DNS provides a host name to IP address mapping [15]. Chord can provide the same service with the name 

representing the key and the associated IP address representing the value. Chord re- quires no special servers, 

while DNS relies on a set of special root 

servers. DNS names are structured to reflect administrative bound- aries; Chord imposes no naming structure. DNS 

is specialized to the task of finding named hosts or services, while Chord can also be used to find data objects that 

are not tied to particular machines. The Freenet peer-to-peer storage system [4, 5], like Chord, is decentralized and 

symmetric and automatically adapts when hosts leave and join. Freenet does not assign responsibility for docu- 

ments to specific servers; instead, its lookups take the form of searches for cached copies. This allows Freenet to 

provide a degree of anonymity, but prevents it from guaranteeing retrieval of existing documents or from providing 

low bounds on retrieval costs. Chord does not provide anonymity, but its lookup operation runs in pre- 

dictable time and always results in success or definitive failure. 

 

The Ohaha system uses a consistent hashing-like algorithm for mapping documents to nodes, and Freenet-style 

query routing [18]. As a result, it shares some of the weaknesses of Freenet. Archival Intermemory uses an off-line 

computed tree to map logical ad- dresses to machines that store the data [3]. 

The Globe system [2] has a wide-area location service to map ob- ject identifiers to the locations of moving objects. 

Globe arranges the Internet as a hierarchy of geographical, topological, or adminis- trative domains, effectively 

constructing a static world-wide search tree, much like DNS. Information about an object is stored in a particular 

leaf domain, and pointer caches provide search short cuts [22]. The Globe system handles high load on the logical 

root by partitioning objects among multiple physical root servers us- ing hash-like techniques. Chord performs this 

hash function well enough that it can achieve scalability without also involving any hierarchy, though Chord does 

not exploit network locality as well as Globe. 

 

The distributed data location protocol developed by Plaxton et al. [19], a variant of which is used in OceanStore 

[12], is perhaps the closest algorithm to the Chord protocol. It provides stronger guarantees than Chord: like Chord 

it guarantees that queries make a logarithmic number hops and that keys are well balanced, but the Plaxton protocol 

also ensures, subject to assumptions about net- work topology, that queries never travel further in network distance 

than the node where the key is stored.   The advantage of Chord is that it is substantially less complicated and 

handles concurrent node joins and failures well. The Chord protocol is also similar to Pastry, the location 

algorithm used in PAST [8]. However, Pastry is a prefix-based routing protocol, and differs in other details from 

Chord. 

 

CAN uses a -dimensional Cartesian coordinate space (for some fixed ) to implement a distributed hash table that 

maps keys onto values [20]. Each node maintains state, and the lookup cost is . Thus, in contrast to 

Chord, the state maintained by a CAN node does not depend on the network size , but the lookup cost increases 

faster than . I, CAN lookup times and storage needs match Chord’s. However, CAN is not designed to vary  as   

(and thus ) varies, so this match will only occur for the “right” corresponding to the fixed . CAN requires an 

additional maintenance protocol to periodically remap the identifier space onto nodes. Chord also has the advantage 

that its correctness is robust in the face of partially incorrect routing information. 

Chord’s routing procedure may be thought of as a one- dimensional analogue of the Grid location system [14]. 

Grid relies on real-world geographic location information to route its queries; Chord maps its nodes to an artificial 
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one-dimensional space within which routing is carried out by an algorithm similar to Grid’s. 

Chord can be used as a lookup service to implement a variety of systems, as discussed in Section 3. In 

particular, it can help avoid single points of failure or control that systems like Napster 

possess [17], and the lack of scalability that systems like Gnutella display because of their widespread use of 

broadcasts [10]. 

 

3. System Model 
Chord simplifies the design of peer-to-peer systems and applica- tions based on it by addressing these difficult 

problems: 

 

Load balance: Chord acts as a distributed hash function, spreading keys evenly over the nodes; this provides a 

degree of natural load balance. 

Decentralization: Chord is fully distributed: no node is more important than any other. This improves robustness and 

makes Chord appropriate for loosely-organized peer-to-peer applications. 

Scalability: The cost of a Chord lookup grows as the log of the number of nodes, so even very large systems are 

feasible. No parameter tuning is required to achieve this scaling. 

Availability: Chord automatically adjusts its internal tables to reflect newly joined nodes as well as node failures, 

ensur- ing that, barring major failures in the underlying network, the node responsible for a key can always be found. 

This is true even if the system is in a continuous state of change. 

Flexible naming: Chord places no constraints on the struc- ture of the keys it looks up: the Chord key-space is flat. 

This gives applications a large amount of flexibility in how they map their own names to Chord keys. 

The Chord software takes the form of a library to be linked with the client and server applications that use it. The 

application in- teracts with Chord in two main ways. First, Chord provides a lookup(key) algorithm that yields the IP 

address of the node responsible for the key. Second, the Chord software on each node notifies the application of 

changes in the set of keys that the node is responsible for. This allows the application software to, for ex- ample, 

move corresponding values to their new homes when a new node joins. 

The application using Chord is responsible for providing any de- sired authentication, caching, replication, and user-

friendly naming of data. Chord’s flat key space eases the implementation of these features. For example, an 

application could authenticate data by storing it under a Chord key derived from a cryptographic hash of the data. 

Similarly, an application could replicate data by storing it under two distinct Chord keys derived from the data’s 

application- level identifier. 

The following are examples of applications for which Chord would provide a good foundation: 

Cooperative Mirroring, as outlined in a recent proposal [6].Imagine a set of software developers, each of whom 

wishes to publish a distribution. Demand for each distribution might vary dramatically, from very popular just after 

a new release to relatively unpopular between releases. An efficient ap- proach for this would be for the 

developers to cooperatively mirror each others’ distributions. Ideally, the mirroring sys- tem would balance the 

load across all servers, replicate and cache the data, and ensure authenticity. Such a system should be fully 

decentralized in the interests of reliability, and be- cause there is no natural central administration. 

Time-Shared Storage for nodes with intermittent connectivity. If a person wishes some data to be always 

available, but their 
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Figure 1: Structure of an example Chord-based distributed storage system. 

 

machine is only occasionally available, they can offer to store others’ data while they are up, in return for having 

their data stored elsewhere when they are down. The data’s name can serve as a key to identify the (live) 

Chord node responsible for storing the data item at any given time. Many of the same issues arise as in the 

Cooperative Mirroring applica- tion, though the focus here is on availability rather than load balance. 

 

Distributed Indexes to support Gnutella- or Napster-like keyword search. A key in this application could be 

derived from the desired keywords, while values could be lists of machines offering documents with those 

keywords. 

Figure 2: An identifier circle consisting of the three nodes 0, 1, and 3. In this example, key 1 is located at 

node 1, key 2 at node 3, and key 6 at node 0. 

 

Chord improves the scalability of consistent hashing by avoid- ing the requirement that every node know about 

every other node. A Chord node needs only a small amount of “routing” informa- tion about other nodes. Because 

this information is distributed, a node resolves the hash function by communicating with a few other nodes. In an -

node network, each node maintains information only about other nodes, and a lookup requires 

messages. 

Chord must update the routing information when a node joins or leaves the network; a join or leave requires

 messages. 

 

4. The Base Chord Protocol 

The Chord protocol specifies how to find the locations of keys, how new nodes join the system, and how to 

recover from the failure (or planned departure) of existing nodes. This section describes a simplified version of the 

protocol that does not handle concurrent joins or failures. Section 5 describes enhancements to the base pro- tocol 

to handle concurrent joins and failures. 

Overview 

At its heart, Chord provides fast distributed computation of a hash function mapping keys to nodes responsible 

for them. It uses consistent hashing [11, 13], which has several good properties. With high probability the hash 

function balances load (all nodes receive roughly the same number of keys). Also with high prob- ability, when 

anode joins (or leaves) the network, only an fraction of the keys are moved to a different location— 

this is clearly the minimum necessary to maintain a balanced load. 

identifier is produced by hashing the key. We will use the term “key” to refer to both the original key and its 

image under the hash function, as the meaning will be clear from context. Similarly, the term “node” will refer to 

both the node and its identifier under the hash function. The identifier length   must be large enough to make the 

probability of two nodes or keys hashing to the same iden- tifier negligible. 

Consistent hashing assigns keys to nodes as follows. Identifiers are ordered in an identifier circle modulo   . Key   

is assigned to the first node whose identifier is equal to or follows (the identifier of) in the identifier space. This 

node is called the successor node of key   , denoted by successor  If identifiers are represented as a circle of 

numbers from  to, thenis the first node clockwise from . 

Figure 2 shows an identifier circle with. The circle has three nodes: 0, 1, and 3. The successor of identifier 1 is 

node 1, so key 1 would be located at node 1. Similarly, key 2 would be located at node 3, and key 6 at node 0. 

Consistent hashing is designed to let nodes enter and leave the network with minimal disruption. To maintain 

the consistent hash- ing mapping when a node joins the network, certain keys previ- ously assigned to ’s successor 

now become assigned to . When node    leaves the network, all of its assigned keys are reassigned to ’s successor. 

http://www.ijesr.org/


5 

 
ISSN 2277-2685 

IJESR/Feb. 2021/ Vol-11/Issue-1/1-10 

Boddapati Soujanya et. al., / International Journal of Engineering & Science Research 

 

                Corresponding Author                  www.ijesr.org            1 

  

No other changes in assignment of keys to nodes need occur. In the example above, if a node were to join with 

iden- tifier 7, it would capture the key with identifier 6 from the node with identifier 0. 

The following results are proven in the papers that introduced consistent hashing [11, 13]: 

 

THEOREM 1. For any set of nodes and keys, with high probability: 

 

1. Each node is responsible for at most keys 

2. When annode joins or leaves the network, respon- sibility forkeys changes hands (and only to or from the joining 

or leaving node). 

When consistent hashing is implemented as described above, the theorem proves a bound of. The consistent hashing 

paper shows that can be reduced to an arbitrarily small constant by having each node run“virtual nodes” each 

with its own identifier. 

The phrase “with high probability” bears some discussion. A simple interpretation is that the nodes and keys are 

randomly cho- sen, which is plausible in a non-adversarial model of the world. The probability distribution is then 

over random choices of keys and nodes, and says that such a random choice is unlikely to pro- 
Notation Definition 
finger mod , 

interval finger start finger start 

 first node finger start 

successor the next node on the identifier circle; 
finger node 

predecessor the previous node on the identifier circle 

Table 1: Definition of variables for node   , using -bit identi- fiers. 

duce an unbalanced distribution. One might worry, however, about an adversary who intentionally chooses keys to all 

hash to the same identifier, destroying the load balancing property. The consistent hashing paper uses “ -universal 

hash functions” to provide certain guarantees even in the case of nonrandom keys. 

Rather than using a -universal hash function, we chose to use the standard SHA-1 function as our base hash function. 

This makes our protocol deterministic, so that the claims of “high probability” no longer make sense. However, 

producing a set of keys that collide under SHA-1 can be seen, in some sense, as inverting, or “decrypt- ing” the SHA-

1 function. This is believed to be hard to do. Thus, instead of stating that our theorems hold with high probability, 

we can claim that they hold “based on standard hardness assumptions.” For simplicity (primarily of presentation), we 

dispense with the use of virtual nodes. In this case, the load on a node may exceed the average by (at most) anfactor 

with high probability (or in our case, based on standard hardness assumptions). One reason to avoid virtual nodes is 

that the number needed is determined by the number of nodes in the system, which may be difficult to deter- mine. 

Of course, one may choose to use an a priori upper bound on the number of nodes in the system; for example, we 

could postulate at most one Chord server per IPv4 address. In this case running 32 

virtual nodes per physical node would provide good load balance. 

 

In the section reporting our experimental results (Section 6), we will observe (and justify) that the average lookup 

time is . 

 Node Joins 

In a dynamic network, nodes can join (and leave) at any time. The main challenge in implementing these 

operations is preserving the ability to locate every key in the network. To achieve this goal, Chord needs to preserve 

two invariants: 

1. Each node’s successor is correctly maintained. 

2. For every key   , node is responsible for . 

In order for lookups to be fast, it is also desirable for the finger tables to be correct. 

This section shows how to maintain these invariants when a sin- gle node joins. We defer the discussion of multiple 

nodes joining simultaneously to Section 5, which also discusses how to handle 
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a node failure. Before describing the join operation, we summa- rize its performance (the proof of this theorem is in 

the companion technical report [21]): 

 

THEOREM 3. With high probability, any node joining or leav- ing an     -node Chord network will use

 messages to re-establish the Chord routing invariants and finger 

tables. 

 

To simplify the join and leave mechanisms, each node in Chord maintains a predecessor pointer. A node’s 

predecessor pointer con- tains the Chord identifier and IP address of the immediate predeces- sor of that node, and can 

be used to walk counterclockwise around the identifier circle. 

To preserve the invariants stated above, Chord must perform three tasks when a node joins the network: 

1. Initialize the predecessor and fingers of node . 

2. Update the fingers and predecessors of existing nodes to re- flect the addition of . 

3. Notify the higher layer software so that it can transfer state (e.g. values) associated with keys that node is 

now respon- sible for. 

We assume that the new node learns the identity of an existing Chord node by some external mechanism. 

Node uses to 

5. Concurrent Operations and Failures 

In practice Chord needs to deal with nodes joining the system concurrently and with nodes that fail or leave 

voluntarily. This section describes modifications to the basic Chord algorithms de- scribed in Section 4 to handle 

these situations. 

Stabilization 

The join algorithm in Section 4 aggressively maintains the finger tables of all nodes as the network evolves. Since 

this invariant is difficult to maintain in the face of concurrent joins in a large net- work, we separate our 

correctness and performance goals. A basic “stabilization” protocol is used to keep nodes’ successor pointers up to 

date, which is sufficient to guarantee correctness of lookups. Those successor pointers are then used to verify and 

correct fin- ger table entries, which allows these lookups to be fast as well as correct. 

If joining nodes have affected some region of the Chord ring, a lookup that occurs before stabilization has 

finished can exhibit one of three behaviors. The common case is that all the finger ta- ble entries involved in the 

lookup are reasonably current, and the lookup finds the correct successor in steps. The second case is where 

successor pointers are correct, but fingers are inaccu- rate. This yields correct lookups, but they may be slower. In 

the final case, the nodes in the affected region have incorrect successor pointers, or keys may not yet have migrated 

to newly joined nodes, and the lookup may fail. The higher-layer software using Chord will notice that the desired 

data was not found, and has the option of retrying the lookup after a pause. This pause can be short, since 

stabilization fixes successor pointers quickly. 

Our stabilization scheme guarantees to add nodes to a Chord ring in a way that preserves reachability of existing 

nodes, even in the face of concurrent joins and lost and reordered messages. Stabi- lization by itself won’t correct 

a Chord system that has split into multiple disjoint cycles, or a single cycle that loops multiple times around the 

identifier space. These pathological cases cannot be produced by any sequence of ordinary node joins. It is unclear 

whether they can be produced by network partitions and recoveries or intermittent failures. If produced, these cases 

could be detected and repaired by periodic sampling of the ring topology. 

Figure 7 shows the pseudo-code for joins and stabilization; this code replaces Figure 6 to handle concurrent 

joins. When node first starts, it calls join, where is any known Chord node. The function asks to find the 

immediate successor of . By itself, does not make the rest of the network aware of . 

Every node runs stabilize periodically (this is how newly joined nodes are noticed by the network).   When node     

runs stabilize, it asks ’s successor for the successor’s predecessor   , and de- cides whether    should be   ’s 

successor instead. This would be the case if node recently joined the system. stabilize also noti- fies node ’s 

successor of ’s existence, giving the successor the chance to change its predecessor to . The successor does this 
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only if it knows of no closer predecessor than . 

As a simple example, suppose node joins the system, and its ID lies between nodes and would acquire 

 as its succes- sor. Node , when notified by   , would acquire as its predeces- sor. When next runs 

stabilize, it will ask for its predecessor (which is now   );  would then acquire as its successor. 

Finally, will notify   , and will acquire as its predecessor. At this point, all predecessor and successor pointers are 

correct 

As soon as the successor pointers are   correct,   calls   to find predecessor (and thus find successor) will work. 

Newly joined nodes that have not yet been fingered may cause find predecessor to initially undershoot, but the loop in 

the lookup algorithm will nev- ertheless follow successor (finger ) pointers through the newly joined nodes until the 

correct predecessor is reached. Eventually fix fingers will adjust finger table entries, eliminating the need for these 

linear scans. 

The following theorems (proved in the technical report [21]) show that all problems caused by concurrent joins 

are transient. The theorems assume that any two nodes trying to communicate will eventually succeed. 

THEOREM 4. Once a node can successfully resolve a given query, it will always be able to do so in the 

future. 

THEOREM 5. At some time after the last join all successor pointers will be correct. 

The proofs of these theorems rely on an invariant and a termina- tion argument. The invariant states that once 

node can reach node via successor pointers, it always can. To argue termination, we consider the case where two 

nodes both think they have the same successor . In this case, each will attempt to notify , and will eventually 

choose the closer of the two (or some other, closer node) as its predecessor. At this point the farther of the two will, 

by con- tacting , learn of a better successor than . It follows that every node progresses towards a better and 

better successor over time. This progress must eventually halt in a state where every node is considered the 

successor of exactly one other node; this defines a cycle (or set of them, but the invariant ensures that there will 

be at 

most one). 

We have not discussed the adjustment of fingers when nodes join because it turns out that joins don’t substantially 

damage the per- formance of fingers. If a node has a finger into each interval, then these fingers can still be used 

even after joins. The distance halving argument is essentially unchanged, showing thathops suffice to reach a node 

“close” to a query’s target. New joins in- fluence the lookup only by getting in between the old predecessor and 

successor of a target query. These new nodes may need to be scanned linearly (if their fingers are not yet 

accurate). But unless a 

tremendous number of nodes joins the system, the number of nodes between two old nodes is likely to be very small, 

so the impact on lookup is negligible. Formally, we can state the following: 

 

THEOREM 6. If we take a stable network with nodes, and another set of up to nodes joins the network with no 

finger point- ers (but with correct successor pointers), then lookups will still take 

time with high probability. 
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More generally, so long as the time it takes to adjust fingers is less than the time it takes the network to double 

in size, lookups should continue to take hops. Failures and Replication 

When a node fails, nodes whose finger tables include must find ’s successor. In addition, the failure of must not 

be allowed to disrupt queries that are in progress as the system is re-stabilizing. The key step in failure recovery is 

maintaining correct succes- sor pointers, since in the worst case find predecessor can make progress using only 

successors. To help achieve this, each Chord node maintains a “successor-list” of its nearest successors on the 

Chord ring. In ordinary operation, a modified version of the stabi- lize routine in Figure 7 maintains the successor-

list. If node no- tices that its successor has failed, it replaces it with the first live en- try in its successor list. At that 

point, can direct ordinary lookups for keys for which the failed node was the successor to the new successor. As 

time passes, stabilize will correct finger table entries 

and successor-list entries pointing to the failed node. 

After a node failure, but before stabilization has completed, other nodes may attempt to send requests through the 

failed node as part of a find successor lookup. Ideally the lookups would be able to proceed, after a timeout, by 

another path despite the failure. In many cases this is possible. All that is needed is a list of alternate nodes, easily 

found in the finger table entries preceding that of the failed node. If the failed node had a very low finger table 

index, nodes in the successor-list are also available as alternates. 

The technical report proves the following two theorems that show that the successor-list allows lookups to 

succeed, and be effi- cient, even during stabilization [21]: 

 

THEOREM 7. If we use a successor list of length 

in a network that is initially stable, and then every node fails with probability 1/2, then with high probability find 

successor returns the closest living successor to the query key. 

 

THEOREM 8. If we use a successor list of length 

in a network that is initially stable, and then every node fails with probability 1/2, then the expected time to execute 

find successor in the failed network is . 

 

The intuition behind these proofs is straightforward: a node’s successors all fail with probability , so with high 

prob- ability a node will be aware of, so able to forward messages to, its closest living successor. 

The successor-list mechanism also helps higher layer software replicate data. A typical application using Chord 

might store repli- cas of the data associated with a key at the nodes succeeding the key. The fact that a Chord node 

keeps track of its successors means that it can inform the higher layer software when successors come and go, and 

thus when the software should propagate new replicas. 

6. Simulation and Experimental Results 

In this section, we evaluate the Chord protocol by simulation. The simulator uses the lookup algorithm in 

Figure 4 and a slightly older version of the stabilization algorithms described in Section 5. We also report on some 

preliminary experimental results from an operational Chord-based system running on Internet hosts. 

 Protocol Simulator 

The Chord protocol can be implemented in an iterative or recur- sive style. In the iterative style, a node resolving 

a lookup initiates all communication: it asks a series of nodes for information from their finger tables, each time 

moving closer on the Chord ring to the desired successor. In the recursive style, each intermediate node forwards a 

request to the next node until it reaches the successor. The simulator implements the protocols in an iterative 

style. 

 Load Balance 

We first consider the ability of consistent hashing to allocate keys to nodes evenly. In a network with nodes and   

keys we would like the distribution of keys to nodes to be tight around . 

We consider a network consisting of  nodes, and vary the total number of keys from  to  in increments of . For 

each value, we repeat the experiment 20 times. Figure 8(a) plots the mean and the 1st and 99th percentiles of the 
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number of keys per node. The number of keys per node exhibits large variations that increase linearly with the 

number of keys. For example, in all cases some nodes store no keys. To clarify this, Figure 8(b) plots the 

probability density function (PDF) of the number of keys per node when there are keys stored in the 

network. The maximum number of nodes stored by any node in this case is 457, or the mean value. For 

comparison, the 99th percentile is the mean value. 

One reason for these variations is that node identifiers do not uni- formly cover the entire identifier space. If we 

divide the identifier space in   equal-sized bins, where   is the number of nodes, then we might hope to see one 

node in each bin. But in fact, the proba- bility that a particular bin does not contain any node is. For large values of     

this approaches . 

As we discussed earlier, the consistent hashing paper solves this problem by associating keys with virtual nodes, 

and mapping mul- tiple virtual nodes (with unrelated identifiers) to each real node. Intuitively, this will provide a 

more uniform coverage of the iden- tifier space. For example, if we allocate randomly chosen virtual nodes to 

each real node, with high probability each of the 

7. Conclusion 

Many distributed peer-to-peer applications need to determine the node that stores a data item. The Chord 

protocol solves this challenging problem in decentralized manner. It offers a power- ful primitive: given a key, it 

determines the node responsible for storing the key’s value, and does so efficiently. In the steady state, in an-node 

network, each node maintains routing information for only about other nodes, and resolves all lookups via 

messages to other nodes. Updates to the routing infor- mation for nodes leaving and joining require only mes 

sages. 

Attractive features of Chord include its simplicity, provable corectness, and provable performance even in the 

face of concurrent node arrivals and departures. It continues to function correctly, al- beit at degraded 

performance, when a node’s information is only partially correct. Our theoretical analysis, simulations, and 

exper- imental results confirm that Chord scales well with the number of nodes, recovers from large numbers of 

simultaneous node failures and joins, and answers most lookups correctly even during recov- ery. 

We believe that Chord will be a valuable component for peer- to-peer, large-scale distributed applications such 

as cooperative file sharing, time-shared available storage systems, distributed indices for document and service 

discovery, and large-scale distributed computing platforms. 
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