ISSN 2277-2685

JESR/AUG 2022/ Vol-12/Issue-3/1-10
Ms.Asmita Pankaj Ambekar/lnternational Journal of Engineering & Science Research

MACHINE LEARNING FOR WEB VULNERABILITY

DETECTION

Ms.Asmita Pankaj Ambekar,
Assistant Professor, Dept. of CSE,
Malla Reddy Engineering College (Autonomous), Secunderabad,
Telangana State

ABSTRACT

In this project, we propose a methodology to leverage Machine Learning (ML) for the
detection of web application vulnerabilities. Web applications are particularly
challenging to analyses, due to their diversity and the widespread adoption of custom
programming practices. ML is thus very helpful for web application security: it can take
advantage of manually labeled data to bring the human understanding of the web
application semantics into automated analysis tools. We use our methodology in the
design of Mitch, the first ML solution for the black-box detection of Cross-Site Request
Forgery (CSRF) vulnerabilities. Mitch allowed us to identify 35 new CSRFs on 20

major websites and 3 new CSRFs on production software.
Keywords: ML, CSRF, widespread, web application.
INTRODUCTION

Web applications are the most common interface to security sensitive data and
functionality available nowadays. They are routinely used to file tax incomes, access
the results of medical screenings, perform financial transactions, and share opinions
with our circle of friends, just to mention a few popular use cases. On the downside,
this means that web applications are appealing targets to malicious users (attackers)
who are determined to force economic losses, unduly access confidential data or create

embarrassment to their victims. Securing web applications is well known to be hard.

There are several reasons for this, ranging from the heterogeneity and complexity of
the web platform to the adoption of undisciplined scripting languages offering dubious
security guarantees and not amenable for static analysis. In such a setting, black-box

vulnerability detection methods are particularly popular. As opposed to white-box

1

*Corresponding Author www.ijesr.org

http://www.ijesr.org/

ISSN 2277-2685

JESR/AUG 2022/ Vol-12/Issue-3/1-10

Ms.Asmita Pankaj Ambekar/lnternational Journal of Engineering & Science Research
techniques which require access to the web application source code, black-box methods

operate at the level of HTTP traffic, i.e., HTTP requests and responses. Though this
limited perspective might miss important insights, it has the key advantage of offering
a language-agnostic vulnerability detection approach, which abstracts from the
complexity of scripting languages and offers a uniform interface to the widest possible
range of web applications. This sounds appealing, yet previous work showed that such
an analysis is far from trivial. One of the main challenges there is how to expose to
automated tools a critical ingredient of effective vulnerability detection, i.e., an
understanding of the web application semantics. Example: Cross-Site Request Forgery
(CSRF) Cross-Site Request Forgery (CSRF) is a well-known web attack that forces a
user into submitting unwanted, attacker controlled HT TP requests towards a vulnerable
web application in which she is currently authenticated. The key concept of CSRF is
that the malicious requests are routed to the web application through the user’s browser,
hence they might be indistinguishable from intended benign requests which were

actually authorized by the user.
A typical CSRF attack works as follows:

1) Alice logs into an honest yet vulnerable web application, e.g., her preferred social
network. Session authentication is implemented through a session cookie that is
automatically attached by the browser to any subsequent request towards the web

application;

2) Alice opens another tab and visits an unrelated website, e.g., a newspaper website,

which returns a web page including malicious advertisement;

3) The malicious advertisement sends a cross-site request to the social network using

HTML or JavaScript, e.g., asking to “like” a given political party.

Since the request includes Alice’s cookies, it is processed in her authentication context
at the social network. This way, the malicious advertisement can force Alice into
putting a “like” to the desired political party, which might skew the result of online

surveys.

Notice that CSRF does not require the attacker to intercept or modify user’s requests

and responses: it suffices that the Preventing CSRF

*Corresponding Author www.ijesr.org

http://www.ijesr.org/

ISSN 2277-2685

JESR/AUG 2022/ Vol-12/Issue-3/1-10

Ms.Asmita Pankaj Ambekar/lnternational Journal of Engineering & Science Research
To prevent CSRF, web developers have to implement explicit protection mechanisms.

If adding extra user interaction does not affect usability too much, it is possible to force
re-authentication or use one-time passwords / CAPTCHAs to prevent cross-site
requests going through unnoticed. In many cases, however, automated prevention is
preferred: the recently introduced SameSite cookie attribute can be used to prevent
cookie attachment on cross-site requests, which solves the root cause of CSRF and is
highly recommended for new web applications. Unfortunately, this defense is not yet
widespread and existing web applications typically filter out cross-site request by using
any of the following techniques:

1) checking the value of standard HTTP request headers such as Referrer and Origin,

indicating the page originating the request;

2) checking the presence of custom HTTP request headers like X-Requested-With,

which cannot be set from a cross-site position;

3) checking the presence of unpredictable anti-CSRF tokens,set by the server into

sensitive forms.

A recent paper discusses the pros and cons of these different solutions. However, all
three options suffer from the same limitation: they require a careful and fine-grained
placement of security checks. For example, tokens should be attached to all and only
the security-sensitive HTTP requests, so as to ensure complete protection without

harming the user experience.

Using a token to protect a “like” button is useful to prevent the attack discussed above,
yet having a token on the social network homepage is undesirable, because it might
lead to rejecting legitimate cross-site requests, e.g., from clicks on the results of a search
engine indexing the social network. In the end, finding the “optimal” placement of anti-
CSRF defenses is typically a daunting task for web developers. Modern web application

development frameworks provide

Automated support for this, yet CSRF vulnerabilities are still routinely found even in
top-ranked websites. This motivates the need for effective CSRF detection tools. But

how can we provide automated tool support for CSRF detection if we have no

*Corresponding Author www.ijesr.org

http://www.ijesr.org/

ISSN 2277-2685

JESR/AUG 2022/ Vol-12/Issue-3/1-10

Ms.Asmita Pankaj Ambekar/lnternational Journal of Engineering & Science Research
mechanized way to detect which HTTP requests are actually security-sensitive.are

passed - No splits.
EXISTING SYSTEM

In the existing system Securing web applications is well known to be hard. There are
several reasons for this, ranging from the heterogeneity and complexity of the web
platform to the adoption of undisciplined scripting languages offering dubious security
guarantees and not amenable for static analysis. Though this limited perspective might
miss important insights, it has the key advantage of offering a language-agnostic
vulnerability detection approach, which abstracts from the complexity of scripting
languages and offers a uniform interface to the widest possible range of web

applications.
PROPOSED SYSTEM

Cross-Site Request Forgery (CSRF) is a well-known web attack that forces a user into
submitting unwanted, attacker controlled HTTP requests towards a vulnerable web
application in which she is currently authenticated. The key concept of CSRF is that
the malicious requests are routed to the web application through the user’s browser,
hence they might be indistinguishable from intended benign requests which were
actually authorized by the user. The CSRF does not require the attacker to intercept or
modify user’s requests and responses: it suffices that the victim visits the attacker’s
website, from which the attack is launched. Thus, CSRF vulnerabilities are exploitable

by any malicious website on the Web.

MODULES DESCRIPTION

User:

The User can register the first. While registering he required a valid user email and
mobile for further communications. Once the user register then admin can activate the
customer. Once admin activated the customer then user can login into our system. User
can do the data preprocess. First required running website name. By using that website
the user can test the csrfs. By help of bolt tool the user can fetch related all csrfs and

generated algorithm names. The result will be stored in json files. Later the user can get

*Corresponding Author www.ijesr.org

http://www.ijesr.org/

ISSN 2277-2685

IJESR/AUG 2022/ Vol-12/lIssue-3/1-10
Ms.Asmita Pankaj Ambekar/lnternational Journal of Engineering & Science Research
the results of Mitch dataset. The mitch dataset tested for POST method as well GET

method to. The result will be displayed on the browser.
Admin:
Admin can login with his credentials. Once he login he can activate the users. The
activated user only login in our applications. The admin can set the training and testing
data for the project of the Mitch Dataset. The user search all urls related csrf token
admin can view in his page. The admin can also check the POST method performed
data from the dataset and GET method related data also.
False Positives and False Negatives:
Mitch produces a false positive when it returns a candidate CSRF that cannot be
actually exploited. This is something relatively easy to detect by manual testing, though
this process is tedious and time-consuming. In general, it is not possible to reliably
identify when Mitch produces a false negative, because this would require to know all
the CSRF vulnerabilities on the tested websites. To estimate this important aspect, we
keep track of all the sensitive requests returned by the ML classifier embedded into
Mitch and we focus our manual testing on those cases. This is a reasonable choice to
make the analysis tractable, because we first showed that the classifier performs well
using standard validity measures.
Machine Learning Classifier:

The ML classifier used by Mitch was trained from a dataset of around 6000
HTTP requests from existing websites, collected and labeled by two human experts.
The feature space X of the classifier has 49 dimensions, each one capturing a specific
property of HTTP requests. Those can be organized into following categories.
following set of numerical features:
numOfParams: the total number of parameters;
numOfBools: the number of request parameters bound to a boolean value;
numOflds: the number of request parameters bound to an identifier, i.e., a hexadecimal
string, whose usage was empirically observed to be common in our dataset;
numOfBlobs: the number of request parameters bound to a blob, i.e., any string which
is not an identifier;
regLen: the total number of characters in the request, including parameter names and
values.

Home page:

*Corresponding Author www.ijesr.org

http://www.ijesr.org/

ISSN 2277-2685
%G !/ESR IJESR/AUG 2022/ Vol-12/lssue-3/1-10
: Ms.Asmita Pan kaj Ambekar/ Intgrnaﬁonal Journal of Engineering & Science Research

3

WEB VULNERABILITY

MACHINE LEARNING FOR WEB
VULNERABILITY DETECTION: THE CASE OF
CROSS-SITE REQUEST FORGERY

User Registration Form

WEB VULNERABILITY

USER REGISTRATION HERE

WEB VULNERABILITY

USER LOGIN HERE

User Home:

'WEB VULNERABILITY
MACHINE LEARNING FOR WEB
VULNERABILITY DETECTION: THE CASE OF
CROSS-SITE REQUEST FORGERY

Getting website csrfs:

*Corresponding Author www.ijesr.org

http://www.ijesr.org/

ISSN 2277-2685
JESR/AUG 2022/ Vol-12/Issue-3/1-10
Ms.Asmita Pan kaj Ambekar/ International Journal of Engineering & Science Research

« » @

FETCH AN WEBSITE CSRFS

Scanning urls:

CSRF token:

@

€ 28 O o “ 2@

MD5 Token

*Corresponding Author www.ijesr.org

http://www.ijesr.org/

ISSN 2277-2685

JESR/AUG 2022/ Vol-12/Issue-3/1-10
Ms.Asmita Pan kaj Ambekar/ International Journal of Engineering & Science Research

»®

Mitch Detected sites:

[= R o

Machine Learning Results:

'WEB VULNERABILITY

Machine Learnin Results
51 08507604562737643 o7 2 7478
et 0815140884410648 08766363166953520 08055335068375

WEB VULNERABILITY

ADMIN LOGIN HERE

CONCLUSION

Web applications are particularly challenging to analyse, due to their diversity
and the widespread adoption of custom programming practices. ML is thus very helpful

in the web setting, because it can take advantage of manually labeled data to expose the
8

*Corresponding Author www.ijesr.org

http://www.ijesr.org/

ISSN 2277-2685

JESR/AUG 2022/ Vol-12/Issue-3/1-10

Ms.Asmita Pankaj Ambekar/lnternational Journal of Engineering & Science Research
human understanding of the web application semantics to automated analysis tools. We

validated this claim by designing Mitch, the first ML solution for the blackbox detection
of CSRF vulnerabilities, and by experimentally assessing its effectiveness. We hope
other researchers might take advantage of our methodology for the detection of other
classes of web application vulnerabilities.

REFERANCES

[1] Stefano Calzavara, Riccardo Focardi, Marco Squarcina, and Mauro Tempesta.
Surviving the web: A journey into web session security. ACM Comput. Surv.,
50(1):13:1-13:34, 2017.

[2] Avinash Sudhodanan, Roberto Carbone, Luca Compagna, Nicolas Dolgin,
Alessandro Armando, and Umberto Morelli. Large-scale analysis & detection of
authentication cross-site request forgeries. In 2017 IEEE European Symposium on
Security and Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017, pages 350-365,
2017.

[3] Stefano Calzavara, Alvise Rabitti, Alessio Ragazzo, and Michele Bugliesi. Testing
for integrity flaws in web sessions. In Computer Security - 24rd European Symposium
on Research in Computer Security, ESORICS 2019, Luxembourg, Luxembourg,
September 23-27, 2019, pages 606-624, 2019.

[4] OWASP. OWASP Testing Guide. https://www.owasp.org/index.php/ OWASP
Testing Guide v4 Table of Contents, 2016.

[5] Jason Bau, Elie Bursztein, Divij Gupta, and John C. Mitchell. State of the art:
Automated black-box web application vulnerability testing. In 31st IEEE Symposium
on Security and Privacy, S&P 2010, 16-19 May 2010, Berkeley/Oakland, California,
USA, pages 332-345, 2010.

[6] Adam Doup’e, Marco Cova, and Giovanni Vigna. Why johnny can’t pentest: An
analysis of black-box web vulnerability scanners. In Detection of Intrusions and
Malware, and Vulnerability Assessment, 7th International Conference, DIMVA 2010,
Bonn, Germany, July 8-9, 2010. Proceedings, pages 111-131, 2010.

[7] Adam Barth, Collin Jackson, and John C. Mitchell. Robust defenses for cross-site
request forgery. In Proceedings of the 2008 ACM Conference on Computer and
Communications Security, CCS 2008, Alexandria, Virginia, USA, October 27-31,
2008, pages 7588, 2008.

*Corresponding Author www.ijesr.org

http://www.ijesr.org/

ISSN 2277-2685

JESR/AUG 2022/ Vol-12/Issue-3/1-10

Ms.Asmita Pankaj AmbEkar/lnternational Journal of Engineering & Science Research
[8] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of

Machine Learning. The MIT Press, 2012.

[9] Michael W. Kattan, Dennis A. Adams, and Michael S. Parks. A comparison of
machine learning with human judgment. Journal of Management Information Systems,
9(4):37-57, March 1993.

[10] D. A. Ferrucci. Introduction to “This is Watson”. IBM Journal of Research and
Development, 56(3):235-249, May 2012.

10

*Corresponding Author www.ijesr.org

http://www.ijesr.org/

