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ABSTRACT 

The rapid proliferation of Internet of Things (IoT) 

devices across various domains has introduced 

significant challenges in device management and 

security profiling. Traditional machine learning 

approaches to IoT profiling often rely on large 

amounts of labeled data, which are difficult to 

obtain in dynamic and heterogeneous IoT 

environments. This paper proposes a novel 

framework for IoT device profiling using 

Transductive Transfer Learning (TTL), a 

technique that enables knowledge transfer from a 

labeled source domain to an unlabeled target 

domain. The proposed system effectively classifies 

IoT devices and assesses their vulnerabilities by 

leveraging behavioral features extracted from 

network traffic data. 

The methodology incorporates statistical feature 

selection techniques and evaluates the performance 

of multiple machine learning models, including 

Random Forest, Gradient Boosting, and Support 

Vector Machines. To validate the transferability and 

robustness of the approach, extensive experiments 

were conducted using diverse datasets such as CIC 

IoT 2022, IMC 2019, and IoT Sentinel. The results 

demonstrate high classification accuracy and 

reliable vulnerability assessment across varying 

environments. This work contributes to advancing 

secure and scalable IoT network management by 

reducing the dependency on labeled data and 

enabling real-time device identification and risk 

evaluation. 
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Profiling, Transductive Transfer Learning, Domain 
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1-INTRODUCTION 

The rapid evolution of the Internet of Things (IoT) 

has transformed numerous industries, enabling 

seamless connectivity and communication across a 

wide array of devices. With the proliferation of IoT 

devices, effective profiling has become crucial for 

managing networks and ensuring robust security. 

IoT profiling involves identifying and categorizing 

devices based on their behavior and characteristics, 

which aids in monitoring network activity and 

optimizing resource allocation. 

However, profiling IoT devices poses unique 

challenges due to the diversity of device types, the 

dynamic nature of IoT environments, and the limited 

availability of labeled data for training machine 

learning models. In this context, transductive 

transfer learning emerges as a promising solution, 

leveraging knowledge from related domains to 

improve the profiling process. Unlike traditional 

methods that rely on extensive labeled data from the 

target domain, transductive transfer learning adapts 

learned knowledge to the target domain, thereby 

enhancing model performance even when labeled 

data is limited. 

The motivation for this paper is driven by the need 

for more effective and efficient IoT profiling 

techniques capable of handling the increasing 

complexity and scale of IoT networks. Current 

methods often face challenges with accuracy and 

resource consumption, underscoring the demand for 
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innovative approaches. This paper aims to develop a 

transductive transfer learning framework 

specifically designed for IoT device profiling, 

enhancing both identification accuracy and profiling 

efficiency. 

This paper focuses on profiling a diverse range of 

IoT devices and evaluating the proposed 

framework's performance across multiple datasets. 

It is essential to recognize the limitations of this 

study, particularly concerning the generalizability of 

the findings to all IoT environments. 

 

2.LITERATURE SURVEY 

The identification and profiling of IoT devices has 

become a critical area of research due to the 

exponential growth in connected devices and the 

corresponding security threats. Several studies have 

explored machine learning and transfer learning 

techniques to address the challenges of device 

heterogeneity and lack of labeled data in IoT 

environments. 

Danso et al. (2024) proposed a framework 

leveraging the transferability of machine learning 

algorithms to profile IoT devices. Their study 

highlighted the effectiveness of using domain 

adaptation techniques to maintain classification 

accuracy across varied datasets such as CIC IoT, 

IMC, and IoT Sentinel. The approach emphasized 

reducing the dependency on labeled data by training 

models on one domain and applying them to another 

using Transductive Transfer Learning (TTL), 

resulting in reliable profiling across networks. 

Fan et al. (2020) introduced an IoT device 

identification method based on semi-supervised 

learning. Their research focused on situations where 

labeled data is sparse, which is common in IoT 

scenarios. By leveraging behavioral features and a 

limited set of labeled instances, the system 

demonstrated the potential of machine learning in 

real-world deployment, though challenges remained 

in cross-domain adaptability. 

Almomani and Rahman (2022) conducted a 

comprehensive literature review on IoT adoption 

and highlighted the importance of lightweight, 

adaptive profiling solutions. They emphasized the 

need for secure, scalable frameworks that can 

operate in resource-constrained environments and 

adapt to emerging threats, which aligns with the 

rationale behind applying TTL to IoT security. 

Existing studies also reveal that traditional 

supervised learning models often struggle with 

domain shifts, where training and test environments 

differ significantly. Researchers have therefore 

turned to transfer learning, particularly TTL, to 

improve model robustness. However, many earlier 

efforts lacked extensive empirical validation across 

multiple datasets and did not address vulnerability 

assessment as an integral part of device profiling. 

The current work builds on these foundations by 

integrating statistical feature selection, cross-

domain evaluation, and security vulnerability 

analysis using real-time datasets. The proposed 

methodology enhances profiling accuracy and 

device-level risk assessment without the need for 

extensive labeled data in the target domain. 

 

3. BACKGROUND 

IOT DEVICES AND THEIR 

CHARACTERISTICS 

The Internet of Things (IoT) has become a key 

topic in technology, representing a growing 

ecosystem of connected devices. IoT can be defined 

as a network of interconnected physical devices—

such as vehicles, home appliances, and industrial 

systems—that are embedded with electronics, 

sensors, and network connectivity. These devices 

can collect and exchange data, enabling them to 

communicate with each other and interact with the 
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environment, ultimately creating smart, responsive 

systems. 

Key Characteristics of IoT Devices: 

1. Connectivity: IoT devices are designed to be 

connected anytime and anywhere, allowing remote 

interaction and control, such as adjusting a smart 

thermostat from a smartphone. 

2. Intelligence and Unique Identification: Each IoT 

device has a unique identity and can process data to 

make decisions autonomously. For instance, a smart 

sensor can adjust HVAC systems based on real-time 

temperature readings. 

3. Self-Configuration: IoT devices often have self-

configuring capabilities, enabling easy integration 

into existing networks with minimal user 

intervention during setup. 

4. Interoperability: Standardized protocols allow 

different IoT devices to communicate seamlessly, 

enabling cross-device functionality and fostering 

innovation by reducing data silos. 

5. Scalability: IoT systems are built to accommodate a 

growing number of devices and data, maintaining 

efficiency and performance as the network expands. 

6. Embedded Sensors and Actuators: Sensors detect 

environmental changes, while actuators perform 

actions based on this data, enabling automation, 

such as lighting control based on occupancy. 

7. Data-Driven Operation: IoT systems gather and 

analyze large amounts of data, which is used to 

enhance efficiency and inform decisions. This data-

centric approach allows continuous improvement 

and adaptation. 

8. Security Concerns: Due to inherent resource 

constraints (such as limited power and memory), IoT 

devices are often more vulnerable than traditional 

computing devices. These limitations make it 

challenging to implement robust security protocols 

directly on the devices, increasing their 

susceptibility to cyber threats. 

9. Context Awareness: IoT systems are often context-

aware, meaning they can adjust their actions based 

on the surrounding environment, providing tailored 

and efficient user experiences. 

TRANSFER LEARNING IN MACHINE 

LEARNING 

Transfer learning is a machine learning approach 

where a model developed for one task is applied to 

a related, yet distinct, task or dataset. This technique 

leverages the knowledge a model has gained in one 

domain (known as the source domain) to enhance its 

performance in another, often related domain (the 

target domain). Transfer learning is particularly 

beneficial in scenarios where labeled data is limited 

or costly to obtain, allowing models to generalize 

well in the target domain by building upon the 

insights acquired from a well-labeled source 

domain. 

Traditionally, machine learning models are trained 

from scratch for each new task, assuming that the 

training and test data originate from the same feature 

space and data distribution. However, in real-world 

applications, data distributions often vary, and 

starting anew for every task can be inefficient. 

Transfer learning addresses this by reusing and 

adapting pre-trained models, which helps improve 

model generalizability and efficiency without 

needing large volumes of labeled data for each task. 

 

4-METHODOLOGY 

This section outlines the methodology used for IoT 

profiling using transductive transfer learning, 

detailing the data collection, feature extraction, and 

transductive learning framework. 

DATA COLLECTION 

Data collection is the foundation of effective IoT 

device profiling. In this methodology, data is 

collected from various IoT devices across multiple 

environments or networks (e.g., different labs). This 
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includes obtaining network traffic data and metadata 

from IoT devices, such as packet transmission logs, 

device identifiers, and communication patterns. Key 

datasets, like the CIC IoT 2022 dataset, are used as 

the primary source, while other datasets (e.g., IMC 

2019 and IoT Sentinel) serve as target domains to 

evaluate the adaptability and robustness of the 

model across different distributions. The data 

collected must encompass a diverse set of device 

activities to accurately reflect real-world usage and 

vulnerabilities. 

FEATURE EXTRACTION 

Feature extraction focuses on selecting and 

transforming data variables that help distinguish one 

IoT device from another. After data collection, 

relevant features are derived from the raw network 

data. Common features include: 

• Packet counts, DNS requests, and IP addresses: 

Indicate communication frequency and destinations. 

• Network protocol types and response times: 

Highlight device communication behaviors. 

• Power usage and operational states: Indicate 

device activity and potential vulnerabilities. 

These features are carefully chosen to maximize the 

classifier's accuracy while minimizing 

computational costs. The ANOVA statistical 

technique is often applied to select the most 

informative features, focusing on those that best 

differentiate device types. 

 

 

Fig. 4.1 Top 20 features extracted using ANOVA technique and their respective score on the CIC data set 

 

TRANSDUCTIVE LEARNING FRAMEWORK 

The transductive learning framework utilizes 

labeled source domain data to perform predictions in 

an unlabeled target domain, bridging domain 

differences without retraining the model for each 

new dataset. 
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Fig. 4.2 Overall system framework of the proposed system 

 

5-

ALGORITHM 

The algorithm follows a structured approach to 

identify IoT device types across different domains. 

It leverages transductive transfer learning to apply a 

model trained on one dataset (source domain) to a 

different, but related, dataset (target domain) 

without requiring additional labeled data in the 

target domain. The key objectives of the algorithm 

are: 

• To accurately classify device types in the target 

domain based on the source domain model. 

• To assess vulnerabilities of identified devices by 

consulting security databases. 

• To visualize the device types and associated 

security risks. 

The algorithm can be divided into three main 

phases: 

1. Feature Extraction and Model Training in the 

Source Domain: Prepares the data, selects 

relevant features, and trains the model on labeled 

source data. 

2. Transductive Transfer and Testing in the 

Target Domain: Applies the trained model to 

make predictions in the target domain, where 

data lacks labels. 

3. Vulnerability Assessment and Visualization: 

Maps identified device types to potential 

vulnerabilities and visualizes results on a 

dashboard for further analysis. 

DETAILED ALGORITHM STEPS 

This section breaks down the algorithm into step-

by-step actions to achieve the profiling and 

vulnerability assessment objectives. Below are 

the detailed steps: 

1. Data Collection and Preprocessing 

o Source Domain Data Preparation: Collect and 

preprocess data from the source domain (e.g., 

CIC IoT 2022 dataset). Normalize the data, 

handle missing values, and prepare it for feature 

extraction. 

o Target Domain Data Preparation: Collect data 

from the target domain (e.g., IMC 2019 Payload 

or IoT Sentinel dataset) for testing, ensuring 

similar preprocessing steps as applied to the 

source data. 

2. Feature Extraction 
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o Use statistical methods, such as ANOVA, to 

identify and select the most relevant features that 

effectively differentiate device types. 

o Transform the raw data into a feature vector 

comprising important features like packet 

counts, DNS queries, and protocol types. 

3. Model Training in Source Domain 

o Model Selection and Initialization: Choose an 

appropriate machine learning model based on the 

source data characteristics (e.g., Random Forest, 

SVM). 

o Training and Cross-Validation: Split the 

source data into training and validation sets. 

Train the model on the source data, using cross-

validation to avoid overfitting and to ensure 

generalizability. 

o Feature Selection Tuning: Fine-tune feature 

selection using methods like SelectKBest to 

ensure only the most significant features are 

used. 

4. Transductive Transfer to Target Domain 

o Model Application: Apply the trained model to 

the target domain data for classification. As the 

target domain data is unlabeled, predictions are 

made directly. 

o Inference Generation: For each device type 

prediction in the target domain, calculate the 

inference percentage (IP) to evaluate the model’s 

confidence level for each device type. This helps 

confirm the reliability of predictions in the target 

domain. 

5. Vulnerability Assessment 

o Keyword Search: Based on the predicted device 

type, conduct a keyword search in vulnerability 

databases (e.g., NVD, Vulners, IBM X-Force) to 

assess associated security risks. 

o Data Harvesting: Gather search results and 

store them in a local database for further 

analysis. 

o Standardization and Aggregation: Standardize 

vulnerability data by matching results across 

different databases and aggregate these by 

device type, creating a unified view of 

vulnerabilities. 

6. Visualization and Reporting 

o Dashboard Integration: Visualize device 

profiles and vulnerabilities on a dashboard. Use 

visualizations such as sunburst charts and bar 

graphs to represent device categories and 

corresponding vulnerabilities. 

o Final Output: Generate a report summarizing 

device types, profiling results, and vulnerability 

assessments for easy interpretation. 

The algorithm provides a structured approach to 

identifying, assessing, and visualizing IoT 

devices across domains, ensuring reliable 

transferability and comprehensive security 

evaluation. 

 

6. EXPERIMENTS AND RESULTS 

DATASET DESCRIPTION 

In this study, three key datasets are utilised: CIC 

IoT, IMC 2019, and IoT Sentinel. 

• CIC IoT Dataset: Developed by the Canadian 

Institute for Cybersecurity, this dataset contains a 

wide variety of IoT device traffic data, which 

includes benign and malicious traffic. It is 

significant for transfer learning as it serves as a rich 

source domain, helping to understand the behavior 

of IoT devices under different network conditions. 

• IMC 2019 Dataset: Collected during the Internet 

Measurement Conference (IMC) 2019, this dataset 

consists of network traffic data from IoT devices in 

various scenarios. Its significance lies in providing a 

diverse target domain that allows for effective 

transfer learning applications, reflecting real-world 

usage patterns. 
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• IoT Sentinel Dataset: This dataset is designed to 

evaluate the security of IoT devices and 

applications. It captures traffic patterns from IoT 

devices under attack scenarios, making it a critical 

resource for assessing the transferability of models 

trained on benign traffic to those under attack. 

Table 6.1 Devices in the different labs and the corresponding Device Type 

 

Table 6.2 Number of records for each device type in the CIC data set after data preprocessing and the number of 

sampled records used for training the ML model 

 

 

6.2 E

VALUATION METRICS 

To evaluate the performance of the machine learning 

models, we employed several key metrics: 

• Accuracy: The ratio of correctly predicted instances 

to the total instances. It provides a general idea of 

the model's performance but may not reflect its 

effectiveness in imbalanced datasets. 

 𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =

TruePositive+TrueNegative

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

• Precision: The ratio of true positive predictions to 

the total positive predictions made by the model. 

This metric is crucial for understanding the model's 

ability to minimize false positives. 

𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 =
TruePositive

TruePositive + FalsePositive
 

• Recall: The ratio of true positive predictions to the 

actual positives in the dataset. It helps assess the 

model's ability to capture all relevant instances. 

𝑅𝐸𝐶𝐴𝐿𝐿 =
TruePositive

TruePositive + FalseNegative
 

• F1-Score: The harmonic mean of precision and 

recall, providing a balance between the two metrics. 

It is particularly useful when dealing with 

imbalanced datasets. 
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𝐹1 − 𝑆𝐶𝑂𝑅𝐸 = 2 ∗
Precision ∗ Recall

Precision + Recall
 

• Inference Percentage: This metric assesses how 

well the model can apply learned knowledge from 

the source domain to make predictions in the target 

domain, thus evaluating the transferability of the 

learning. 

These metrics enable a comprehensive assessment 

of model performance, highlighting strengths and 

weaknesses in classification tasks. 

Table 5.3 Performance of the several classifiers on the CIC IoT data set 2022 acting as the source domain and 

used for training 

 

 

PERFORMANCE ANALYSIS 

The performance analysis of various machine 

learning algorithms showed distinct results across 

both the source and target domains. Key findings 

include: 

• Gradient Boosting Classifier: Demonstrated the 

highest accuracy and F1-score in both the CIC IoT 

and IoT Sentinel datasets, indicating strong 

performance in distinguishing between benign and 

malicious traffic. 

• Multi-Layer Perceptron (MLP): Achieved 

competitive results, particularly in recall, suggesting 

its effectiveness in identifying all relevant instances 

in the target domain. 

• Support Vector Classifier (SVC): While not the 

top performer, it provided reasonable results and 

may be beneficial in scenarios requiring clear 

decision boundaries. 

Overall, these results indicate that transductive 

transfer learning enhances model performance, 

particularly when adapting to new environments 

characterized by different traffic patterns. 

VULNERABILITY ASSESSMENT 

Vulnerability assessment is a systematic process 

used to identify, evaluate, and prioritize 

vulnerabilities in a system, network, or application. 

In the context of IoT devices, this assessment is 

crucial for understanding potential security risks that 

could be exploited by attackers. It enables 

organizations to proactively address vulnerabilities, 

ensuring the integrity, confidentiality, and 

availability of their IoT systems. 

The vulnerability assessment conducted in this study 

aims to analyze potential security risks associated 

with the identified IoT device types through a 

systematic four-step process. This assessment 

ensures that the identified vulnerabilities are 

comprehensively documented, facilitating better 

security measures for IoT devices. 
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Fig.  Vulnerability assessment overview 

1. 

Vulnerability Keyword Search 

Following the identification of device types by the 

machine learning classifier, each predicted device 

type is used as a keyword to search three prominent 

vulnerability databases: the National Vulnerability 

Database (NVD), Vulners, and IBM X-Force. This 

step involves: 

• Performing API calls to the IBM X-Force and 

Vulners databases using the predicted device types 

as keywords. 

• For the NVD, the data stream is scraped annually, 

allowing for real-time updates of vulnerability 

information. 

• A cron job is scheduled to synchronize the local 

database with the NVD website, ensuring that our 

dataset remains current with the latest vulnerabilities 

reported. 

The output from these searches is stored in 

respective local databases for further processing. 

2. Vulnerability Harvesting 

Each of the three vulnerability databases is queried 

for vulnerabilities related to five predicted device 

types (audio, appliance, camera, home automation, 

and smart hub). This results in a comprehensive 

analysis consisting of 15 iterations (3 databases × 5 

device types). Key steps include: 

• Conducting targeted searches to gather 

vulnerabilities based on specific keywords that 

encompass a range of individual devices within each 

type. For instance: 

o Audio: Audio and Speaker 

o Camera: Camera and Video 

o Home Automation: Plugs, Bulb, and Lamp 

o Appliances: Brewer, Kettle, Microwave, Vacuum, 

Washer, Dryer 

o Smart Hub: Hubs, Smarthub, and Smartthings 

• Normalizing the search results to facilitate storage 

and management, ensuring that the data gathered is 

comprehensive and relevant. 

 

3. Vulnerability Standardization 

Standardization of the results is critical for ensuring 

uniformity across the datasets obtained from various 

sources. The process involves: 
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• Extracting the CVE-ID from the results harvested 

from Vulners and IBM X-Force, which are then 

matched against the NVD database. 

• The NVD serves as the "master source," given its 

comprehensive verification and scoring of CVEs. 

• This step guarantees that the standardized results 

from Vulners and IBM X-Force align with the 

attributes provided by the NVD, allowing for a more 

reliable assessment. 

The standardized results are stored in a local 

database, enabling efficient access and management. 

4. Vulnerability Aggregation 

In the final step of the vulnerability assessment, 

standardized results from each database are 

aggregated into a single, coherent dataset for each 

device type. The aggregation process includes: 

• Combining the standardized vulnerabilities obtained 

from NVD, Vulners, and IBM X-Force for each 

device type. For example, vulnerabilities related to 

the Camera device type would be represented as a 

combined data source: NVDcamera, 

Vulnerscamera, and XForcecamera. 

• This unified view facilitates a more straightforward 

analysis and understanding of vulnerabilities 

associated with each device type, enabling 

stakeholders to prioritize vulnerability management 

activities effectively. 

 VISUALIZATIONS 

To effectively communicate the results of our 

performance analysis, we included several 

visualizations: 

• Bar Graphs: These graphs illustrate the accuracy, 

precision, recall, and F1-score of different 

algorithms across the datasets, facilitating easy 

comparison. 

• Scatter Plots: Used to depict the relationship 

between inference percentages and model 

performance metrics, highlighting trends and 

insights into transferability. 

These visualizations not only enhance the 

interpretability of the results but also provide a clear 

representation of the vulnerabilities associated with 

each model in the context of IoT device profiling. 

 

Fig.  Scatter chart of device types with score3 on the x-axis and exploitability score on the y-axis. 
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Fig.  Bar chart showing the average CSSV score3 of the different predicted device types in the three different 

databases. 

 

7- CONCLUSION 

This study explored the use of transductive transfer 

learning to enhance IoT device classification 

accuracy by transferring knowledge from the CIC 

IoT 2022 dataset to the IMC2019 dataset. The 

results showed reliable identification of device 

types, even across different environments, with 

strong performance for core IoT devices. The 

findings highlight the potential for improving IoT 

device security by tailoring security mechanisms to 

specific vulnerabilities. However, challenges remain 

with new device types and environment shifts. 

Future work could focus on integrating unsupervised 

learning to improve adaptability and fine-tuning 

anomaly detection for better security in specific 

deployments. 
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